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Abstract
A frustrated, effective 1

2 -filled band Hubbard–Heisenberg model has been proposed for describing the
strongly dimerized charge-transfer solid families κ-(ET)2X and Z[Pd(dmit)2]2. In addition to showing
unconventional superconductivity, these materials also exhibit antiferromagnetism, candidate spin-liquid
phases, and, in the case of Z = EtMe3P, a spin-gapped phase that has sometimes been referred to as a
valence bond solid. We show that neither superconductivity nor the valence bond order phase occurs
within the Hubbard–Heisenberg model. We suggest that a description based on 1

4 -filling, that is reached
when the carrier concentration per molecule instead of per dimer is considered, thus may be appropriate.

(Some figures may appear in colour only in the online journal)

1. Introduction

Low-dimensional organic charge-transfer solids (CTS) are
being intensively studied because of their many unusual
competing and coexisting electronic phases. The most
studied among them are probably the κ-(ET)2X and
Z[Pd(dmit)2]2 families, which, depending on the anion
X− or cation Z+ exhibit unconventional superconductivity
(SC), Néel antiferromagnetic (AFM) order, charge ordering
(CO), candidate quantum spin-liquid (QSL) behavior, and
supposedly also valence bond solid (VBS) order [1, 2].
The apparent similarity between these with the cuprate
superconductors have been noted by many investigators. The
semiconductor–SC transition in the CTS occurs under the
application of pressure at constant carrier density, which
suggests that the transition is driven by a small modification
of a particular parameter of an appropriate Hamiltonian. The
key questions then are, what is the minimal model, and which
is the parameter whose changes give the competing phases.

Experimental observations appear to give a simple
answer to these questions. The 2:1 (1:2) stoichiometry of
κ-(ET)2X (Z[Pd(dmit)2]2), indicates 0.5 hole (electron) per
cationic (anionic) molecule. The crystal structures consist of

dimers of molecules arranged in an anisotropic triangular
lattice. The strong role of repulsive electron–electron (e–e)
Coulomb interactions is indicated by the observation of
Néel AFM in κ-(ET)2Cu[N(CN)2]Cl and a candidate QSL
phase in κ-(ET)2Cu2(CN)3 [1]. A nonmagnetic state with
spin gap has been found in EtMe3P[Pd(dmit)2]2, and has
been referred to as a VBS [2]. The VBS also requires
strong e–e interactions, and furthermore, pressure-induced
SC from this so-called VBS phase has been observed [3].
Considering the strongly correlated natures of the insulating
states proximate to SC–AFM, QSL and VBS—the effective
1
2 -filled band Hubbard model, or some variant of it, appears
to be the appropriate minimal model, with the dimer units
as the sites. The anisotropy of the triangular lattice, i.e.,
the degree of frustration, is the variable parameter that
changes under external pressure or internal pressure effect
caused by counter-ions with large size. Such a picture readily
explains the observed commensurate AFM at large anisotropy.
Motivated by Anderson’s resonating valence bond (RVB)
theory [4] many investigators have proposed that the QSL
and VBS phases can be explained within the correlated
effective 1

2 -filled band scenario. For moderate Hubbard U,
an AFM semiconductor–paramagnetic metal (PM) transition

10953-8984/13/385603+05$33.00 c© 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/25/38/385603
mailto:r.t.clay@msstate.edu
http://stacks.iop.org/JPhysCM/25/385603


J. Phys.: Condens. Matter 25 (2013) 385603 N Gomes et al

occurs with increasing frustration. D-wave SC mediated by
fluctuations of the AFM ordering at the AFM–PM boundary
has been also proposed based on mean-field and dynamic
mean-field theories (DMFT) [5–12].

Numerical calculations have, however, failed to find
SC within the triangular lattice 1

2 -filled band Hubbard
model [13–15]. Numerical studies have also failed to find
a VBS phase in the model [16]. Although the 1

2 -filled
Hubbard model on the anisotropic triangular lattice does not
appear to support SC, closely related models continue to be
suggested as the appropriate theoretical model for describing
the SC transition in the CTS. It has been claimed that the
simple Hubbard model does not include all the spin–spin
interactions that play an important role in the CTS, and
that additional spin exchange unrelated to the Hubbard U
must be incorporated to correctly capture AFM fluctuation
effects [10–12, 17]. This has led to theoretical works on the
so-called Hubbard–Heisenberg model given below. The goal
of this paper is to critically examine whether the addition of a
Heisenberg exchange term, assumed to be independent of the
Hubbard onsite interaction U, causes a superconducting phase
to occur in the 1

2 -filled band anisotropic triangular lattice
model. A second objective is to see whether the combined
effects of U, J, and frustration can give the nonmagnetic
insulating state found in EtMe3P[Pd(dmit)2]2 [2]. It is
relevant in this context to point out that whether or not
a VBS phase exists within the so-called J1–J2 Heisenberg
spin Hamiltonian, with spin exchange J1 between nearest
neighbors of a square lattice and J2 along one diagonal
bond, was controversial until recently [18, 19]. The similarity
between the J1–J2 spin Hamiltonian and the triangular lattice
Hubbard–Heisenberg Hamiltonian (see below), taken together
with the finite U in the latter, gives additional motivation for
the current work.

2. Results

We consider the following Hamiltonian,

H = −t
∑
〈ij〉

Bi,j − t′
∑
{ij}

Bi,j + U
∑

i

ni↑ni↓

+ J
∑
〈ij〉

ESi · ESj + J′
∑
{ij}

ESi · ESj. (1)

In equation (1) sites 〈ij〉 are nearest neighbors on a square
lattice while sites {ij} are the next-nearest neighbors across a
diagonal of each square plaquette. Bi,j =

∑
σ (c

†
i,σ cj,σ +H.c),

where c†
i,σ creates an electron of spin σ on site i; niσ = c†

iσ ciσ .
ESi is the (spin- 1

2 ) spin operator for site i. All energies will
be given in units of t. We limit our analysis here to the
region of lattice anisotropy appropriate for the title materials,
t′ . 1 [20–22].

We consider two limiting cases: (i) J′ = 0, when
the added Heisenberg interactions do not frustrate Néel
antiferromagnetism, and (ii) J′ = J, which frustrates the AFM
state. The J′ = 0 limit was studied by Gan et al using
renormalized mean-field theory [10] and by Guertler et al
using variational Monte Carlo [17] while the J′ = J limit was

Figure 1. Diagonal bond order B′ and spin structure factor S(π, π)
versus U for t′ = 0.4. (a) J′ = 0 (b) J′ = J. Points are calculated at a
spacing of 1U = 0.1 The J interaction strengthens the AFM phase.

investigated by Rau and Kee using a slave-rotor mean-field
theory [12]. Powell and McKenzie studied variable J′ [0 <
J′/J < 2] using an RVB ansatz [11]. SC was found in some
region of the parameter space by all of these authors. Several
authors also found a spin-liquid phase [11, 12]. Rau and Kee
examined the isotropic lattice and in addition found a VBS
phase [12] that was claimed to explain the VBS-like order in
EtMe3P[Pd(dmit)2]2 [2].

Here we examine the ground state of equation (1) using
exact diagonalization of a 4× 4 lattice. Exact diagonalization
was previously used to study the model in the limit J =
0, concluding that no SC or enhancement of the pairing
correlations by U is present [13]. Despite the small-lattice
size (even smaller lattices are however used in cluster DMFT
calculations [9]) the validity of these 4 × 4 results has
been confirmed by recent path integral renormalization group
(PIRG) [23] calculations on considerably larger lattices [14]
that arrived at even stronger conclusions regarding the absence
of SC.

It will be useful to briefly recall the ground state phase
diagram in the J = J′ = 0 limit [13–16, 24–28]. Known
ground state phases include two AFM phases with Néel and
120◦ order, a PM phase and a gapless nonmagnetic insulator
(NMI) or QSL phase [13, 14, 16, 24–28]. The NMI phase is
found between the AFM and PM phases for t′ & 0.5 [24, 25].
Near the isotropic lattice (t′ ≈ t) magnetically ordered states
with Q 6= (π, π) are found for large U [13, 26, 28]. However,
such non-Néel AFM ordering is not found experimentally [1].

We first consider the t′ . 0.5 region of the phase diagram
where a direct PM–AFM transition is found for J = J′ = 0.
We have calculated the diagonal bond order B′ ≡ 〈Bi,j〉 for
sites i and j connected by the t′ bond and the spin structure
factor

S(Q) =
1
N

∑
j,k

eiQ·(rj−rk)〈(nj,↑ − nj,↓)(nk,↑ − nk,↓)〉. (2)

Figures 1(a) and (b) show B′ and S(π, π) versus U for t′ = 0.4
and several different J (0, 0.3, 0.5). A sudden drop in B′

at U = Uc, simultaneous with a sudden increase in S(π, π),
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Figure 2. Diagonal bond order B′ versus U for t′ = 0.8 with
(a) J′ = 0, and (b) J′ = J. The derivative of B′, dB′/dU with
(c) J′ = 0 and (d) J′ = J. B′ is calculated for points separated by
1U = 0.1. For J′ = 0 no NMI phase is found. When J′ 6= 0, both
PM–NMI and NMI–AFM phase boundaries shift to smaller U. The
solid, dashed–dotted and dashed curves correspond to J = 0.0, 0.3,
and 0.5, respectively.

indicates transition to an insulating AFM state [13, 25]. For
both J′ = 0 and J′ = J, J lowers the Uc for transition to AFM,
broadening the AFM region. As shown in figure 1 the largest
broadening occurs when J′ = 0.

As t′ increases the size of the discontinuity in B′ and
S(π, π) decreases. This is due to the appearance of a NMI
phase in between the PM and AFM phases for t′ & 0.5 [24,
25]. While the transition between PM and AFM phases for
t′ . 0.5 is discontinuous as U is varied, for larger t′ the
PM–NMI transition at Uc1 and the NMI–AFM transition
at Uc2 are continuous [25]. The continuous PM–NMI and
NMI–AFM transitions cannot be captured from calculations
of B′, 〈n↑n↓〉 or Sσ (π, π). As noted previously [13] for
J = J′ = 0, derivatives dB′/dU or d〈n↑n↓〉/dU can be used
to determine Uc1 and Uc2. Critical values obtained by the
two methods differ by 0.1 at most. In the present case, J
and J′ have nearly negligible effects on 〈n↑n↓〉, which is
why we have determined Uc1 and Uc2 from calculations of
dB′/dU. In figure 2 we plot B′ versus U and its derivative
dB/dU for t′ = 0.8, calculated using a centered-difference
approximation with a U grid of 1U = 0.1. We find that
for J′ = 0 (figures 2(a) and (c)), the stability of the AFM
phase is enhanced by U; Uc1 decreases with J. At the same
time, the NMI phase is suppressed: the inflection point in B′

in figure 2(a) for J = 0 and the corresponding minimum in
dB′/dU in figure 2(c) disappear even for quite small values
of J. For J′ = J (figures 2(b) and (d)), the system progresses
through two transitions, PM–NMI and NMI–AFM, as in the
pure Hubbard model. As seen in figures 2(b) and (d), there is
a slight narrowing of the NMI phase.

A necessary condition for SC is that the pair–pair
correlation function P(r) for pairs of appropriate symmetry
reaches a constant value as r→∞. An additional requirement
for SC mediated by interactions is that the pair–pair
correlations are enhanced by the interaction [13]. In exact

Figure 3. Long-range dx2−y2 pair–pair correlation function P(r?)
(see text) as a function of J for (a) t′ = 0.4, J′ = 0, (b) t′ = 0.8,
J′ = 0, (c) t′ = 0.4, J′ = J, and (d) t′ = 0.8, J′ = J. P(r?) at
U = J = 0 is shown by the filled square on each plot. Independent
of the value of J, long-range pair–pair correlations decrease
monotonically as U increases.

diagonalization studies of the J = 0 model, P(r) for all
symmetries was found to decrease monotonically with U from
the U = 0 limit [13]. Large-lattice studies found further that
as a function of distance r, the magnitude of P(r) decreased
with distance faster than the U = 0 solution [14]. These two
results indicated that SC is not present in the J = 0 limit. Here
we focus on any possible enhancement of P(r) due to J.

We calculate the pair–pair correlation function as a
function of distance, P(r) = 〈1†

i1i+Er〉, where pair-creation
operators 1†

i are defined as

1
†
i =

1
√

2

∑
Eν

g(Eν)(c†
i,↑c

†
i+Eν,↓ − c†

i,↓c
†
i+Eν,↑). (3)

The phases g(Eν) determine the symmetry of the supercon-
ducting pairs. In our calculations we considered s, dx2−y2 , and
dxy pairing symmetries [13]. Out of these pairing symmetries,
we found that for t′ < t,P(r) is largest for dx2−y2 pairing
symmetry.

Although we have calculated P(r) for all r we show here
our results for the largest possible r, r?. Figure 3 shows the
pair–pair correlation P(r?) as a function of J for dx2−y2 pair
symmetry. Representative values of U are chosen in each
panel to correspond to the different regions of the phase
diagram (PM, AFM, NMI). In figures 3(a) and (b) we take
J′ = 0 and two different values of t′, 0.4 and 0.8. In both
figures 3(a) and (b) a direct PM–AFM transition exists. As
with J = 0 [13], P(r?) decreases monotonically with U,
with its value decreasing discontinuously at the PM–AFM
transition. As figures 3(a) and (b) show, P(r?) also decreases
monotonically with J for J′ = 0. The primary effect of J here
is to expand the AFM region (figure 1), which decreases the
potential phase space available for SC. In figures 3(c)–(d) we
take J′ = J. In figure 3(c), t′ = 0.4 and again there are only PM
and AFM phases. The behavior is very similar to the J′ = 0
case. Figure 3(d) is for J′ = J and t′ = 0.8, with U values
chosen to represent points in the PM, NMI, and AFM phases.
In the PM region for large t′ (t′ & 0.7) there is a small increase
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of P(r?) with J, but P(r?) remains considerably below its
uncorrelated value. Pairing correlations continue to decrease
monotonically with U.

Summarizing our results for the dx2−y2 pair–pair
correlations, for t′ . 0.7, J and J′ decrease P(r). In the larger
t′ region, although there is a weak enhancement of P(r)
compared to J = J′ = 0, the pair correlations never exceed
the value obtained for the uncorrelated limit.

In view of the absence of SC found in our calculations, it
is of some interest to determine how these results, primarily
for the strong coupling regime, extrapolate to earlier weak
coupling (small U/|t|) calculations on the Hubbard model
based on the renormalization group approach [29]. These
latter calculations do find robust SC within the model,
although the predicted critical temperatures are very small.
A direct comparison of our work with the weak coupling
approach is difficult for several reasons. First, lattices far
larger than the present 4× 4 would be required to resolve the
non-local pairing functions appropriate for the weak coupling
model. Secondly, the competition with AFM, ignored within
the weak coupling calculation, is relevant within the half-filled
model even for small U. We have, for example, found
discernible AFM with peak in S(π, π) for U/|t| as small as 0.5
and small t′. This interaction strength is already much smaller
than estimates of U/t for the κ-(ET)2X and Z[Pd(dmit)2]2
materials.

The compound EtMe3P[Pd(dmit)2]2 exhibits a spin
gap below 25 K [2]. The low temperature phase has
been described as a VBS by the original investigators [2].
Pressure-induced VBS–SC transition, –analogous to the
AFM–SC and QSL–SC transitions in the κ-(ET)2X –occurs
in EtMe3P[Pd(dmit)2]2. Any candidate model that is valid
for CTS with dimerized units should therefore have VBS
order in some region of the phase diagram. Further motivation
to find VBS phases in models of interacting electrons
comes from the extensive recent theoretical investigations
of frustration-driven AFM–VBS quantum phase transitions
within quantum spin models [18, 19]. The VBS phase, if
it at all appears within the present model, should appear
in the highly frustrated region of the phase diagram.
This is in agreement with the estimation of t′/t ≈ 0.9 in
EtMe3P[Pd(dmit)2]2, obtained from ab initio calculation [22].
In the context of the present model the parameter region
of interest is large U with t′ ∼ t, in between the Néel and
120◦ AFM phases. Previous PIRG numerical studies [16] as
well as more recent work [30] on the Hubbard (J′ = J = 0)
model have, however, found the NMI rather than VBS in this
region.

As with SC, the VBS phase has been claimed within
slave-rotor theory for the isotropic Hubbard–Heisenberg
model (t′ = t, J′ = J) for both J = 0 and J > 0 [12]. The J
interaction was found to strengthen the VBS order [12]. We
therefore investigate the Hubbard–Heisenberg Hamiltonian in
this highly frustrated region. The VBS order parameter is the
bond–bond structure factor Sx

B(Q) for bonds along the x axis,
defined as

Sx
B(Q) =

1
N

∑
i,j

eiQ·rij〈(Bi,i+x̂ − 〈B〉)(Bj,j+x̂ − 〈B〉)〉, (4)

Figure 4. (a) Bond–bond structure factor SBx (qx, qy) as a function
of qx, qy for t′ = 0.9,U = 8, and J′ = J = 0.3. (b) SBx (π, qy) for
U = 8 and varying J. Lines are only guides to the eye.

where 〈B〉 is the expectation value of the bond order. We
consider just the J′ = J case, as no NMI phase exists when
J′ = 0 (see figure 2). VBS order with columnar dimer pattern
as claimed in [12] would correspond to a peak in Sx

B(Q) at
Q = (π, 0). Figure 4(a) shows Sx

B(Q) for U = 8, t′ = 0.9, and
J′ = J = 0.3. Throughout the NMI region (6 . U . 12) we
find no changes in the Q-dependence of Sx

B(Q). As shown in
figure 4(a), all orderings with qx = π , corresponding to bond
alternation along x, are suppressed compared to other values
of qx. Figure 4(b) shows the J dependence of Sx

B(qx = π, qy).
As J increases, no peaks develop; rather the effect of J is
simply a renormalization affecting all Sx

B(Q) at all Q equally.
Since the VBS order is absent within the NMI phase for J = 0
to begin with [16], this is strong evidence that the J interaction
does not lead to a VBS phase. Our result is in agreement with
that obtained in [18, 19], who noted the absence of the VBS
within the J1–J2 model, which is the U → ∞ limit of our
Hamiltonian equation (1).

3. Discussion

In summary, the inclusion of Heisenberg exchange inter-
actions in the effective 1

2 -filled band for κ-(ET)2X and
Z[Pd(dmit)2]2 merely strengthens the AFM phase, and either
eliminates the NMI phase (for J′ = 0) or reduces its width
in the phase diagram (for J′ 6= 0). Importantly, neither SC
nor VBS phases are present in the 1

2 -filled band model
for any realistic J. The phase diagram (figure 5) remains
nearly identical with the phase diagram of the bare 1

2 -filled
Hubbard model [13, 14]. The absence of SC and VBS phases
in our phase diagram indicates that while the approximate
methods used previously can correctly predict AFM, which
is a classical ordering, they predict spurious spin-singlets, the
formation of which is a quantum mechanical effect.

The question that we started with—what is the minimal
model that describes the complete phase diagram of the
CTS —then continues to be relevant. Our current finite
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Figure 5. The phase diagram with J′ = J for parameter regions
relevant for the dimerized CTS.

size calculations suggest that purely electronic 1
2 -filled band

models in which short-range e–e and spin–spin interactions,
together with lattice frustration, are the driver of SC may not
be the appropriate choices. As in the case of J = 0, we intend
to extend our calculations to larger lattices using the PIRG
technique in the future. In principle this still leaves open the
possibility that there exist other variants of the 1

2 -filled band
correlated-electron model, with or without electron–phonon
interactions, that may be suitable. To the best of our
knowledge no such theoretical scenario has been proposed
yet. In the absence of such work in the existing literature
we suggest that the interacting frustrated 1

4 -filled band model
proposed by us [31, 32] and others [33, 34] is a likely
choice for the correct theoretical model. Within this latter
model, the number of charge carriers per molecule, rather than
per dimer unit cell is the relevant parameter. This proposal
has several apparent advantages over effective 1

2 -filled band
models. First, it applies equally well to both the dimerized
κ-(ET)2X and Z[Pd(dmit)2]2 and the undimerized θ -(ET)2X
which show CO–SC (as opposed to AFM–SC) transitions.
As also pointed out in [35], there exist many other exotic
superconductors which coincidentally or otherwise share this
same bandfilling. Second, we have recently shown that a
frustration-driven AFM-spin singlet transition occurs within
the dimerized interacting 1

4 -filled band model, where the spin
singlet state coexists with CO [32, 36]. Structural analysis
shows that the so-called VBS state in EtMe3[Pd(dmit)2]2
has the same CO pattern [2, 37] as that in the coexisting
CO-spin singlet found by us in the frustrated 1

4 -filled band [32,
36]. Finally, experiments have found evidence for charge
fluctuations in the QSL state of κ-(ET)2Cu2(CN)3 [38], which
is clearly not possible within the 1

2 -filled band scenario. The
work reported here then gives added motivation to search
for frustration-induced SC within the correlated 1

4 -filled band
model. Work is currently in progress in this direction.
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