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Abstract This article presents results of a parameter study for a new denoising
model, using parallel computing and advanced dynamic load balancing techniques
for performance improvement of implementations. A denoising model is suggested
hybridizing total variation and Laplacian mean-curvature; the fourth-order model and
its numerical procedure introduce a number of parameters. As a preliminary step in
the model development, a parameter study has been undertaken in order to discover
solitary and interactive effects of the parameters on model accuracy. Such a para-
meter study is necessarily time-consuming due to the huge number of combinations
of the parameter values to be tested. In addition, the study has to be performed on
various images, thereby increasing the overall investigation time. The performance
of this first parallel implementation of a new hybrid model for image denoising is
evaluated when the application is running on heterogeneous environments. The hy-
brid model is simulated on a general-purpose Linux cluster for which the parallel
efficiency exceeds 96%.
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1 Introduction

Denoising, or noise reduction, is an important image processing (IP) step for var-
ious image-related applications and often necessary as a preprocessing for other
imaging tasks such as segmentation and compression. Thus, image denoising meth-
ods have occupied a significant position in IP, computer graphics, and their ap-
plications [18, 29–31, 37]. Recently, as the field of IP requires higher levels of
reliability and efficiency, various powerful tools of partial differential equations
(PDEs) and functional analysis have been successfully applied to image restora-
tion [1, 11, 13, 28, 32, 34, 36, 41] and color processing [7, 14, 20, 24, 38]. In par-
ticular, a considerable amount of research has been carried out for the theoretical
and computational understanding of the total variation (TV) model [36] and its vari-
ants [1, 11–13, 22, 23, 26, 28, 29, 39].

In general, most of those denoising models may lose fine structures of the image
due to a certain nonphysical dissipation. As remedies, the employment of methods
such as Besov norm [29] and iterative refinement [33] have been proposed and stud-
ied. However, these new methods are either difficult to minimize utilizing the Euler–
Lagrange equation approach or have the tendency to keep an observable amount of
noise. Recently, in order to overcome the drawbacks, one of the authors suggested
the method of nonflat time evolution (MONTE) [21] and the equalized net diffusion
(END) approach [19]. The MONTE and END techniques are applicable to various
(conventional) denoising models as either a time-stepping procedure or a variant of
mathematical modeling.

As another remedy to the nonphysical dissipation, fourth-order PDE models have
emerged [27, 40]. In particular, the Laplacian mean-curvature (LMC) model has been
given a particular attention due to its potential capability to preserve edges of linear
curvatures. However, it has been numerically verified that the LMC model can eas-
ily introduce granule-shaped spots to restored images. To overcome this granularity
problem, our efforts have been directed towards studying of a hybrid model which
combines a TV-based model with an LMC model. Moreover, detailed optimal choices
of algorithm parameters introduced in the hybrid model have been investigated and
are discussed in this article.

This paper presents a parameter study for a proposed hybrid TV-LMC model for
image denoising using parallel computing and advanced techniques for performance
improvement. The hybrid model introduces a number of parameters, highlighting the
need for a procedure for selecting optimal parameters that will result in restored im-
ages of higher quality. The parameters studied in this paper are described in Sect. 2.3.
Preliminary to the development of such a selection procedure, we have undertaken a
parameter study of the hybrid model in order to discover the solitary and interactive
effects of the parameters on model accuracy. Such a parameter study is necessarily
time-consuming due to the huge number of combinations of the parameter values to
be tested. In addition, the study has to be performed on a number of different images,
thereby increasing the overall investigation time. Thus, the parameter study was im-
plemented as a parallel computing application. The selection of optimal parameters
for the hybrid TV-LMC model used for the parallel image denoising application em-
ploys advanced dynamic load balancing techniques for performance improvement.
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The justification for using these techniques lies in the severe performance degra-
dation of this computationally intensive parallel application, primarily due to load
imbalance. The performance evaluation of this first parallel implementation of a new
image denoising model is using advanced dynamic scheduling algorithms [2], which
are essential in obtaining efficient execution when the application is running on het-
erogeneous environments.

The rest of this paper is organized as follows. The hybrid model for image de-
noising is discussed in Sect. 2. The dynamic load balancing tool utilized to paral-
lelize the code for the parameter study is described in Sect. 3. Sample results of
performance tests of the parallel implementation are presented in Sect. 4. In Sect. 5,
some numerical results are presented using the outputs of the parameter studies with
the dynamic load balancing tool. Conclusions of the paper are given in Sect. 6. The
Appendix presents a convergence analysis of the iterative algorithm for a linearized
LMC model.

2 A hybrid model for image denoising

2.1 The model

We begin with the Laplacian mean-curvature (LMC) model

∂u

∂t
+ �κ(u) = β(f − u), (1)

where β ≥ 0, a constraint coefficient, and κ(u) denotes the mean-curvature defined
as

κ(u) = ∇ ·
( ∇u

|∇u|
)

.

Here t is an artificial time parameterized for energy descent direction, which is in-
troduced to solve nonlinear partial differential equations more conveniently. In (1),
f is an observed image (possibly contaminated by a certain noise), and the solution
u represents a denoised (noise-removed) image. The LMC model has a major draw-
back: granularity. The restored image can easily incorporate granule-shaped spots.
The LMC model also shows staircasing, a phenomenon that tends to make the re-
stored image locally constant. However, it is relatively easy to cure.

As a remedy, consider the following hybrid model:

∂u

∂t
− σ κ̃(u) + �κ̃(u) = β(f − u), (2)

where σ ≥ 0 is a regularization parameter, and

κ̃(u) = |∇u|κ(u) = |∇u|∇ ·
( ∇u

|∇u|
)

. (3)

Here the gradient magnitude |∇u| has been incorporated into κ̃(u), as a scaling fac-
tor, in order to reduce staircasing [28]. The second-order term is introduced for (2) to
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hold a certain degree of maximum principle, with which the model in turn can elim-
inate the granularity. In this article, we will call (2) the generalized LMC (GLMC)
model. In the following subsection, we present an efficient numerical procedure for
the GLMC model.

2.2 A numerical procedure

Let �t be a timestep size, and tn = n�t . Set un = u(·, tn), n = 0,1, . . . , with u0 =
f . Let (Dx1 ,Dx2)

T and (D2x1 ,D2x2)
T be the half-step (regular) central difference

and one-step (wider) central difference operators for the gradient ∇ , respectively.
Assume that the iterates have been computed up to the (n − 1)th time level. For the
computation of the solution in the nth time level, define matrices: for � = 1,2 and
m = n − 1, n,

K�u
m = −∣∣∇Eun−1

∣∣Dx�

(
Dx�

um

|∇hun−1|
)

,

K2
�u

m = −∣∣∇Eun−1
∣∣D2x�

(
D2x�

um

|∇hun−1|
)

,

Kα
� um = (1 − α)K� um + αK2

� um, α ∈ [0,1],
L�u

m = −Dx�
Dx�

um,

(4)

where |∇Eun−1| and |∇hu
n−1| denote appropriate finite difference approximations

of |∇un−1|. (The above matrices depend on un−1; however, we did not put the de-
pendence on the matrices for a simpler presentation.) Let

K = K1 + K2, Kα = Kα
1 + Kα

2 , L = L1 + L2,

and

D = β + σ Kα + L K. (5)

Then, a linearized Crank–Nicolson (CN) difference equation for (2) reads

vn − vn−1

�t
+ D vn + vn−1

2
= βf. (6)

Now, let

A� = β

2
+ σ Kα

� + L� K�, � = 1,2.

Since

D = (A1 + A2) + (L1 K2 + L2 K1),

Equation (6) can be rewritten as

vn − vn−1

�t
+ (A1 + A2)

vn + vn−1

2

= βf − 1

2
(L1 K2 + L2 K1)

(
vn + vn−1). (7)
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Thus, replacing the last term in (7) by known values with the error not larger than
the truncation error, an alternating direction implicit (ADI) method for (6) can be
formulated as [15, 16]

(
1 + �t

2
A1

)
w∗ =

(
1 − �t

2
A1 − �t A2

)
wn−1 + �tβf

− �t

2
(L1 K2 + L2 K1)

(
3wn−1 − wn−2),

(
1 + �t

2
A2

)
wn = w∗ + �t

2
A2w

n−1.

(8)

The quantity w∗ is an intermediate solution. In this article, we will call (8) the Crank–
Nicolson ADI (CN-ADI) method for (2). Each half step of CN-ADI requires inverting
a series of quint-diagonal matrices, which is computationally inexpensive.

It is not difficult to see that CN-ADI (8) is a second-order perturbation of the
Crank–Nicolson difference equation (6). Indeed, eliminating the intermediate solu-
tion w∗ from (8), we can obtain

wn − wn−1

�t
+ D wn + wn−1

2
= Sn−1/2 − (

Qn + Rn
)
, (9)

where

Qn = �t

4
A1 A2

(
wn − wn−1),

Rn = −1

2
(L1 K2 + L2 K1)

(
wn − 2wn−1 + wn−2).

(10)

Here both Qn and Rn are O(�t2) for smooth solutions. It should be noticed that the
term Qn in (10) is the standard splitting error of the ADI method [15, 16], while Rn

has arisen during the replacement of the last term in (7) by known values. That is,

−1

2
(L1 K2 + L2 K1)

(
wn + wn−1) − Rn = −1

2
(L1 K2 + L2 K1)

(
3wn−1 − wn−2).

(11)
Note that the CN-ADI algorithm (8) is a three-step procedure, defined well for

n ≥ 2. For n = 1, one may conveniently assume w−1 = w0 (= f ). Assuming the
model is linear, the CN-ADI algorithm is analyzed for stability and convergence in
the Appendix.

2.3 Algorithm parameters

In addition to having the three model parameters (β , σ , and α), the CN-ADI iteration
involves two extra algorithm parameters, �t and n. The denoising computation must
stop after an appropriate number of iterations. However, it is hard to analytically
determine the right time to stop. Thus finding an appropriate iteration count, n, is an
important problem. In practice, it is often the case that one needs to run the algorithm
a few times to select the best result by comparison. The timestep size �t is also
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Establish uncontaminated image g

Add Gaussian noise to g to produce contaminated image f

Establish parameter counts (N)β, (N)σ , (N)α, (N)�t , (N)n
Establish parameter values β[1], . . . , β[(N)β ]; σ [1], . . . , σ [(N)σ ];

α[1], . . . , α[(N)α]; �t[1], . . . ,�t[(N)�t ]; n[1], . . . , n[(N)n]
For each combination of β,σ,α,�t,n values

Apply denoising procedure on f to produce restored image u

Calculate PSNR; output β,σ,α,�t,n and PSNR
End for

Fig. 1 High-level outline of parameter study

important for effectiveness of the algorithm and the quality of resulting images as
well.

Thus, for a given contaminated image, values have to be selected for the algorithm
parameters β,σ,α,�t , and n which result in the best restored image. However, when
the original uncontaminated image is not known, assessing the quality of the restored
image is difficult, if not impossible. In order to gain insight on the influence of al-
gorithm parameters on the quality of the restored image, we simulate the proposed
denoising model on known images with synthetically added noise. This simulation is
discussed in the next section.

2.4 Parameter study

Preliminary to the development of a procedure for selecting parameters for the pro-
posed hybrid model described in the previous section, we simulated the model by
applying it to restore known images with artificial Gaussian noise. As a measure of
the quality of the restored images, we adopted the peak signal-to-noise ratio (PSNR)
defined as

PSNR ≡ 10 log10

( ∑
ij 2552∑

ij (gij − uij )2

)
dB,

where g denotes the original uncontaminated image, and u is the restored image.
In order to gain insight on the influence of the parameters β,σ,α,�t , and n on

PSNR, we conducted a parameter study, following the pseudocode in Fig. 1. Various
plots from the outputs of the study could be produced, including animations of PSNR
as functions of β,σ,α, with either �t or n fixed and using the other as the variable
for the animation.

The number of combinations of parameter values is simply (N)β × (N)σ × (N)α ×
(N)�t × (N)n, which could be huge even for small to moderate values of the para-
meter counts. Fortunately, the denoising procedure can be computed simultaneously
for several combinations of the parameters, on a parallel machine. However, the de-
noising procedure performs nonuniform amounts of computations for each parameter
combination; therefore, dynamic load balancing is necessary for efficient utilization
of the parallel machine. For the parameter study, we used a dynamic load balancing
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Fig. 2 A popular interconnection network for clusters

tool we developed to parallelize serial codes with a structure similar to Fig. 1. This
tool is described in the next section.

3 Dynamic load balancing tool

We describe in this section a dynamic load balancing tool we developed to simplify
the parallelization and load balancing of applications that contain computationally
intensive parallel loops (like in Fig. 1) on message-passing clusters. These clusters
are usually organized into racks that are connected by a cluster switch, each rack con-
sisting of a number of nodes connected by a rack switch, and each node containing
one or more processors. Figure 2 illustrates a popular interconnection configuration.
Heterogeneity is inherent in such a cluster, more so if it was constructed incremen-
tally over a period of time, because the processors would have different capabilities.
Rates of communication between processors are also variable. Typically, the cluster
scheduler attempts to assign nodes from a single rack to a job for efficient communi-
cations. Even with excellent job scheduling algorithms, the scattering of processors
across a number of racks occurs with a high probability, especially for jobs that re-
quest large numbers of processors. Thus, applications running on clusters typically
need to incorporate load balancing for highest possible performance.

The tool we developed can be integrated into existing sequential applications with
minimal code changes. The tool is a simplified version of the dynamic load balancing
tool based on MPI described in [10]. In a parallel loop, nonuniformity of the iterate
execution times or heterogeneity of the processors usually give rise to load imbalance.
If the number of iterates N is significantly larger than the number of processors P, load
balancing through dynamic loop scheduling will be appropriate. Figure 3 illustrates
the modification of a Fortran 90 program containing a parallel loop to integrate the
tool. Only a few lines are added; essentially, the original do loop is converted to
a while loop where chunks of iterates can be executed concurrently on different
processors. Since the i-iterate invokes CPU-intensive computations, which may
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program Serial_Version
...
do i=1,N

... i-iterate
end do
...

program Parallel_Version_With_Load_Balancing
use DLS
include ‘mpif.h’
type (infoDLS) info
integer method, iStart, iSize, iIters, mpierr
double precision iTime
call MPI_Init (mpierr)
...
method = (choice of loop scheduling technique)
call DLS_Setup (MPI_COMM_WORLD, info)
call DLS_StartLoop (info, 1, N, method)
do while ( .not. DLS_Terminated(info) )

call DLS_StartChunk (info, iStart, iSize)
do i=iStart, iStart+iSize-1 ! was i=1,N
... i-iterate

end do
call DLS_EndChunk (info)

end do
call DLS_EndLoop (info, iIters, iTime)
...

Fig. 3 Parallelization with dynamic load balancing of a Fortran 90 program containing a parallel loop

be expressed in hundreds or thousands of lines of code, the additional code to inte-
grate the tool constitutes a tiny percentage of the total number of lines of code for the
application.

The module DLS (abbreviation for Dynamic Loop Scheduling) contains the type
definition of infoDLS and the codes for the DLS_* routines. Based on the Message-
Passing Interface (MPI) library, the routines implement a scheduler–worker strategy
of load balancing, where the scheduler participates in executing loads, in addition
to being responsible for assigning loads. The DLS routines are briefly described as
follows:

DLS_Setup(MPI_COMM_WORLD,info) initializes a dynamic loop schedul-
ing environment on MPI_COMM_WORLD. Information about this environment is
maintained in the data structure info.
DLS_StartLoop(info,1,N,method) is the synchronization point for the
start of loop execution. (1,N) is the loop range, and method is a user-specified
index for the selected loop scheduling technique. The following techniques are
implemented: static scheduling, a modification of fixed size chunking [25], guided
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self-scheduling [35], factoring [17], variants of adaptive weighted factoring [5, 6,
8, 9], and adaptive factoring [3, 4].
DLS_Terminated(info) returns true if all loop iterates have been executed.
DLS_StartChunk(info,iStart,iSize) returns a range for a chunk of
iterates. This range starts with iterate iStart and contains iSize iterates.
DLS_EndChunk(info) signals the end of execution of a chunk of iterates. In-
ternally, a worker processor requests its next chunk from the scheduler.
DLS_EndLoop(info,iIters,iTime) is the synchronization point at the
end loop execution. iIters is the number of iterates done by the calling proces-
sor, and iTime is the cost (in seconds) measured using MPI_Wtime(). iIters
and iTime are useful for assessing the performance gains achieved by dynamic
load balancing. For example, the sum of the iTimes from all participating proces-
sors gives an estimate of the cost of executing the loop on a single processor.

After loop execution, the results of the computations (in i-iterate) will
be distributed among the participating processors. A reduction operation like
MPI_Reduce() may be necessary to collect the results in one processor, or
MPI_Allreduce to make the results available to all processors in MPI_COMM_WORLD.
This would be the responsibility of the user, since DLS only manipulates the indices
of the loop. Information about the mapping of the chunks of iterates to processors is
maintained in the chunkMap component of the infoDLS structure.

The performance of the code for the parameter study of the denoising procedure
with the dynamic load balancing tool on a general-purpose Linux cluster is described
in the next section.

4 Parallel performance

We conducted preliminary parameter studies for a number of images, considering
(N)β = 9, (N)σ = 9, (N)α = 9, (N)�t = 9, and (N)n = 15 for a total of 98,415 para-
meter combinations. The dynamic scheduling algorithm selected from the dynamic
load balancing tool to improve the performance of our parallel application via load
balancing was the adaptive factoring [3, 4].

The studies were executed on the heterogeneous general-purpose EMPIRE cluster
of the Mississippi State University. The cluster can be abstracted as in Fig. 2 and has
a total of 1038 processors. A rack contains 32 nodes of dual 1.0 GHz or 1.266 GHz
Pentium III processors and 1.25 GB RAM. Each node is connected to a 100 Mb/s
Ethernet rack switch. The rack switches are connected by a gigabyte Ethernet cluster
switch. Installed software includes RedHat Linux and PBS. The general submission
queue allows 64-processor, 48-hour jobs; a special queue allows 128-processor, 96-
hour jobs from a restricted set of users. According to the Top 500 Supercomputer
Sites list published in June 2002, EMPIRE then was the 126th fastest computer in the
world and the 10th among educational institutions in the U.S.

The experimental study considered a submission of jobs to a 32-processor EM-
PIRE cluster, and the experimental results from running five jobs have been aver-
aged and recorded to increase the confidence in the statistics gathered. The cluster
scheduler assigned homogeneous processors to the jobs. Since other jobs were also
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Fig. 4 Distribution of iterations and work times for the parameter study on the image LenaGray256

executing on the cluster along with the study, the contention for network resources
was a source of system-induced load imbalance. However, the major source of load
imbalance was the nonuniform amount of computations required by the denoising
procedure for different sets of parameter values.

Figure 4 gives a summary of the performance of the dynamic load balancing par-
allel code for the parameter study on the image LenaGray256. The left axis (for the
bars) denotes the number of iterations of the loop in Fig. 1 executed by a proces-
sor, while the right axis (for the diamonds) denotes the time in seconds taken by the
processor to execute the iterations. The large differences in the number of iterations
executed by the processors is evidence for application-induced load imbalance. How-
ever, the difference between the maximum and minimum work times is only 2581.3
seconds, which is a relatively narrow range, given that the job time measured by the
cluster scheduler was 8.453 hours. An estimate of the sequential cost of the study is
260.4547 hours (∼10.9 days), which is the sum of the work times of the 32 proces-
sors. Thus, an estimate of the efficiency is (estimated sequential cost)/(parallel cost)
= (260.4547)/(32 × 8.453) = 0.963. The high efficiency indicates that the dynamic
load balancing tool successfully addressed the performance degradation due to load
imbalance.

Figure 5 gives the summary for the parameter study on the image Black-Circle.
The cluster scheduler assigned homogeneous processors to the study, and the job
time was 39.546 hours. The differences in iteration counts are significant, indicating
the presence of application-induced load imbalance. An estimate of the sequential
cost is 1,223.279 hours (∼51 days), which is the sum of the work times of the 32
processors. Thus, an estimate of the efficiency is (estimated sequential cost)/(parallel
cost) = (1223.279)/(32 × 39.546) = 0.967.
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Fig. 5 Distribution of iterations and work times for the parameter study on the image BlackCircle

5 Numerical experiments

In this section, we present some numerical examples using the parameter studies
with the dynamic load balancing tool explained in the previous sections. The image
LenaGray256, Fig. 6(a), was contaminated by a Gaussian noise of PSNR = 24.8 as
in Fig. 6(b) and restored by using the GLMC model (2). Among the 98,415 parameter
combinations, the image LenaGray256 yielded the best PSNR value (= 30.4) for the
following two combinations:

β = 3.1, σ = 0.6, α = 0.1, �t = 0.03, n = 14;
β = 2.5, σ = 0.3, α = 0.3, �t = 0.02, n = 14.

(12)

Figure 6(c) is the restored image using the first combination of parameters in (12).
For a comparison with the GLMC model, the parameter studies with the dynamic

load balancing tool have been also conducted for the conventional TV model

∂u

∂t
− σ κ̃(u) = β(f − u), (13)

where σ = 1 and α = 0. In this case, it reduces to having the three algorithmic para-
meters β, �t , and n, leading to a total of 1,215 parameter combinations ((N)β = 9,

(N)�t = 9, and (N)n = 15). Figure 7 presents restored images for the image Elaine
carried out by the conventional TV model and the new GLMC model. The noisy im-
age in Fig. 7(b) contains a Gaussian noise of PSNR = 24.8. The best PSNR values
using the GLMC model and TV model are 30.8 (200 combinations) and 30.5 (17
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Fig. 6 LenaGray256: (a) The original image g, (b) a noisy image f with a Gaussian noise (PSNR 24.8),
and (c) restored image u (PSNR 30.4) by using the GLMC model

combinations), respectively. Among them, the following combinations were chosen:

TV model: β = 0.4, �t = 0.09, n = 18;
GLMC model: β = 1.9, σ = 0.5, α = 0.6, �t = 0.03, n = 18.

(14)

TV model introduces some nonphysical dissipation to lose fine structures as in
Fig. 7(c). One can see from Fig. 7(d) that the GLMC model outperforms the TV
model. It preserves edges of the image more effectively.

In Table 1, we compare the best PSNR values, obtained from the parameter studies
with the dynamic load balancing tool, for the two models. We select three additional
images Circle, Clock, and Pepper in Fig. 8, in addition to the ones dealt in Figs. 6
and 7. For denoising, the images were also contaminated by the same amount of
Gaussian noise of PSNR = 24.8. As shown in the table, the GLMC model has ob-
tained the better PSNR values than the TV model for all cases. Here the differences in
PSNR values are small for the selected images. However, one should notice that the
GLMC model is designed to converge to locally linear images. The GLMC model
must result in better restored images than the TV model, for most cases. The per-
formance of GLMC can be improved by setting some of the parameters adaptively,
particularly incorporating information on fine structures such as edges and textures.

Optimal parameters may differ for different images. However, an optimal set of
parameters can be used for large number of images in the same class. For example,
one set of parameters used for one MRI image can be used for other MRI images.

6 Conclusions

We have performed a parameter study for a new hybrid model for image restoration.
The hybrid model, which is based on the total variation model and the Laplacian
mean-curvature model, contains a number of parameters that need to be fine-tuned
in order to produce images of high quality. To guide the development of a procedure
for selecting the parameters, we have applied the hybrid model for the restoration
of known images that were contaminated with Gaussian noise. The simulations have
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Fig. 7 Elaine: (a) The original image g, (b) a noisy image f with a Gaussian noise (PSNR 24.8), and
restored images u by using (c) TV (PSNR 30.5) and (d) GLMC model (PSNR 30.8)

Table 1 PSNR analysis
LenaGray256 Elaine Circle Clock Pepper

TV 30.1 30.5 36.1 29.9 32.1

GLMC 30.4 30.8 36.4 30.2 32.3

Fig. 8 Additional images utilized for parameter studies: Circle, Clock, and Pepper
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been conducted on a general-purpose heterogeneous Linux cluster. To address the
load imbalance that potentially arises from algorithmic and systemic sources, we have
utilized a dynamic load balancing tool in the simulation code. The simulations have
achieved very high estimated efficiencies. From the experiments, the hybrid model
has shown a possibility of outperforming the conventional TV model.

Acknowledgements This work was partially supported by the following National Science Foundation
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Appendix: Convergence analysis in linear case

In this section, we would like to understand the convergence behavior of CN-ADI
(8). For an easier analysis, we consider the linear case in (2); that is, the model is
assumed to incorporate

κ̃(u) = |∇ũ0|∇ ·
( ∇u

|∇ũ0|
)

, (15)

where ũ0 is a smoothed image of f . In practice, the model (2) has performed very
similarly when (3) is replaced by (15).

Let

en = un − wn,

where un = u(·, tn), the true solution, and wn denotes the solution of CN-ADI at
t = tn. Then, it follows from (2) and (9) that

en − en−1

�t
+ D en + en−1

2
+ �t Q̂

(
en − en−1)

+ R̂
(
en − 2en−1 + en−2) = δn−1/2, (16)

where

Q̂ = 1

4
A1 A2, R̂ = −1

2
(L1 K2 + L2 K1), (17)

and δn−1/2 is the truncation error, which is O(|�x|2 + �t2) for linear problems.
Define

∂̄t e
n = en − en−1

�t

and rewrite (16) as

(
1 + �t2 Q̂

)
∂̄t e

n + D
2

(
en + en−1) + �t2 R̂ ∂̄2

t en = δn−1/2. (18)
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Multiply this equation by the test function ∂̄t e
n, multiply the result by �t , and sum

from the j0th time level to the nth time level, to have

n∑
j=j0

([
1 + �t2 Q̂

]
∂̄t e

j , ∂̄t e
j
)
�t + 1

2

(
Den, en

) + �t2
n∑

j=j0

(
R̂ ∂̄2

t ej , ∂̄t e
j
)
�t

= 1

2

(
Dej0−1, ej0−1) +

n∑
j=j0

(
δj−1/2, ∂̄t e

j
)
�t, j0 ≥ 1. (19)

Utilizing the inequality a2 − ab ≥ (a2 − b2)/2, one can obtain

n∑
j=j0

(
R̂ ∂̄2

t ej , ∂̄t e
j
)
�t =

n∑
j=j0

(
R̂

[
∂̄t e

j − ∂̄t e
j−1], ∂̄t e

j
)

≥ 1

2

n∑
j=j0

(
R̂ ∂̄t e

j , ∂̄t e
j
) − 1

2

n∑
j=j0

(
R̂ ∂̄t e

j−1, ∂̄t e
j−1)

= 1

2

(
R̂ ∂̄t e

n, ∂̄t e
n
) − 1

2

(
R̂ ∂̄t e

j0−1, ∂̄t e
j0−1). (20)

We apply the Cauchy–Schwartz inequality once more to the term including δj−1/2 in
(19), as

n∑
j=j0

(
δj−1/2, ∂̄t e

j
)
�t ≤ 1

2

n∑
j=j0

(
δj−1/2, δj−1/2)�t + 1

2

n∑
j=j0

(
∂̄t e

j , ∂̄t e
j
)
�t. (21)

Thus, from (19), (20), and (21) we can have

n∑
j=j0

([
1 + 2�t2 Q̂

]
∂̄t e

j , ∂̄t e
j
)
�t + (

Den, en
) + �t2(R̂ ∂̄t e

n, ∂̄t e
n
)

≤ (
Dej0−1, ej0−1) + �t2(R̂ ∂̄t e

j0−1, ∂̄t e
j0−1)

+
n∑

j=j0

∥∥δj−1/2
∥∥2

�t, j0 ≥ 1. (22)

When u−1 = u0 (= f ), it is natural to set w−1 = w0 = f . In this case, choosing
j0 = 1 in (22) gives

n∑
j=1

([
1 + 2�t2 Q̂

]
∂̄t e

j , ∂̄t e
j
)
�t + (

Den, en
) + �t2(R̂ ∂̄t e

n, ∂̄t e
n
)

≤
n∑

j=1

∥∥δj−1/2
∥∥2

�t, n ≥ 1. (23)
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Otherwise, we set j0 = 2. Then, (22) reads

n∑
j=2

([
1 + 2�t2 Q̂

]
∂̄t e

j , ∂̄t e
j
)
�t + (

Den, en
) + �t2(R̂ ∂̄t e

n, ∂̄t e
n
)

≤ (
De1, e1) + �t2(R̂ ∂̄t e

1, ∂̄t e
1) +

n∑
j=2

∥∥δj−1/2
∥∥2

�t, n ≥ 2. (24)

Thus it is important to compute w1 accurately when w−1 is not available.
Here it should be noticed that R̂ may not be a nonnegative operator. Thus, a suffi-

cient condition for the stability of CN-ADI reads

1 + 2�t2 Q̂ + �t R̂ = 1 − �t

2
(L1 K2 + L2 K1) + �t2

2
A1 A2 ≥ 0. (25)

However, A1 A2 is nonnegative, and each of L1, L2, K1, and K2 is bounded by 4 in
its matrix norm.

We summary the above analysis as follows:

Theorem Consider the linear model (2) incorporating (15). Its CN-ADI algorithm
(8) is stable, independently of σ ≥ 0 and α ∈ [0,1], when

�t ≤ 1

16
. (26)

In this case, the error converges in O(�t2 + h2).
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