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I. Introduction

The past two decades have witnessed the discoveries of several new classes of novel elec-
tronic materials. Ranging from conducting polymers through charge transfer solids and inorganic
chain compounds to organic and high temperature superconductors, these materials have in com-
mon two important, unusual properties. First, their electronic structures are strongly anisotropic,
in some cases (e.g., the chain-like conducting polymers) rendering them quasi-one dimensional,
and in others (e.g., the planar copper oxide-based high temperature (“high Tc” ) superconductors)
causing them to be quasi-two dimensional. Second, electron-electron Coulomb interactions play
a considerably more important role than in normal metals [1].

Accordingly, considerable recent theoretical effort has been directed towards (idealized)
models of “strongly correlated electrons in reduced dimensions,” the most celebrated example of
which is the one-dimensional Hubbard model. In the Hubbard Hamiltonian, the Coulomb inter-
actions are caricatured by a single parameter U representing the repulsion when two electrons
occupy the same site. Remarkably, this model is “integrable” [2] in that an exact solution can be
obtained by Bethe Ansatz techniques [3]. Despite its considerable analytic appeal and historical
importance, the one-dimensional Hubbard model is limited in its applicability to the real novel
materials, in which there is considerable evidence for the essential role of longer-ranged Coulomb
interactions. For instance, the “excitonic” effects observed in conducting polymers such as poly-
diacetylene (PDA) and poly-paraphenylene-vinylene (PPV) can not be explained [1; 4] without
invoking at least a nearest-neighbor Coulomb repulsion, conventionally called V .

Considering simultaneously both an on-site U and a nearest-neighbor V leads to the “ex-
tended Hubbard model”, which has recently been the subject of intense interest. In its one-
dimensional variant, appropriate for modeling conducting polymers, certain charge-transfer solids,
and related materials, the extended Hubbard model is described by the Hamiltonian

H = ¡t
NX

i=1;¾="#
(cyi¾ci+1¾ + h:c) + U
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where ni¾ = cyi¾ci¾ and ni = ni" +ni#. In addition to the explicit parameters U and V modeling
the Coulomb interaction, this Hamiltonian has an implicit parameter, ½ = Ne=N , where Ne is the
total number of electrons and N the number of sites. Although band theory applies only in the
absence of strong electron correlations, ½ is conventionally called the “band filling.”

Given their role as caricatures of the Coulomb interaction, it is natural to expect that
in applications to real materials, only positive values of U and V should be considered. In
fact, however, there are at least two reasons for studying negative values as well. First, in some
materials, other interactions (e:g: electron-phonon or exciton) can renormalize U and V and lead to
negative “effective” values. Second, results from the negative U and V regions provide important
benchmarks for other calculations, because in this region superconducting fluctuations occur for
a wide range of couplings. The value ½ is determined by the material. Conducting polymers, for
example, have ½ = 1 (“1/2 filled”) in their pristine insulating states and ½ ' 1 in their doped,
conducting states [1]. Charge transfer salts can have a range of values of ½: TTF-TCNQ, for
instance, goes from an incommensurate value of ½ » 2=3 to the commensurate ½ = 2=3 as a
function of pressure, [5] while the “Bechgaard salts” have ½ = 1=2 (“quarter filled”) [6].

The Hamiltonian Eq. (1) exhibits various symmetries that allow us to limit the range
of parameters we must study. For instance, by a canonical particle-hole transformation, ci¾ =

(¡1)icyi¾ , one obtains ~½ = 1 ¡ ½ and ~H = H + (U + 4V )(N ¡ Ne), which differs from the
original Hamiltonian by a constant irrelevant in the canonical ensemble (fixed ½). Thus we can
restrict ourselves to band fillings less than 1/2. Another transformation, which we will describe
in more detail in later sections, takes the positive Hubbard U model to the negative U Hubbard
model (and in addition introduces a magnetic field).

In view of its broad potential relevance to real materials, the extended Hubbard model has
been studied extensively by a variety of techniques. On the basis of energy level statistics, it is
known to be “non-integrable” for general values of the parameters [2] and thus not amenable to
exact solution (except at special values such as V = 0). The classic “g-ology” investigations [7; 8]
and more recent renormalization group [9] and bosonization [10] studies have provided analytic
insight, particularly in the weak coupling regime. Both exact diagonalization calculations [11] and
quantum Monte Carlo simulations [12-15] have clarified a number of questions at intermediate
and strong coupling [16].

However, most of these calculations have focused on the half-filled case, with the central
issue being the location of spin-density wave (SDW)/charge-density wave (CDW) boundary line,
as well as the existence and location of a tricritical point [12-15; 17]. Recently, several works have
examined the the quarter-filled case (½ = 1=2) and suggested the possibility of superconductivity
in an unexpected region of the U;V parameter plane [18; 19]. However, systematic studies of
the phase diagram of the one-dimensional extended Hubbard model as a function of all three
parameters (U; V; ½) have not been carried out although there exist some work for specific band
fillings [20]. The purpose of this article is to give a rather detailed review on our recent studies
of the one-dimensional extended Hubbard model. Both analytically and numerically, we study the
phase diagram throughout the full parameter space, determine the nature of the different phases,
and describe the quantitative behavior of the spin-spin, charge-charge, and superconducting pairing
correlation functions and related susceptibilities. In particular, we will identify the values of the
parameters for which the extended Hubbard model behaves as a “Luttinger liquid” [21] and
exhibits the conductivity properties of a highly correlated metal.
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The remaining sections of the article are organized as follows. In Sections II and III,
we present an overview of the concepts and methods we use, discussing broken symmetries in
the strong-coupling limit, reviewing weak-coupling results abd properties of a Luttinger liquid,
describing our quantum Monte Carlo and exact diagonalization algorithms. Section IV contains
our quantitative calculations, both analytic and numerical, of the phase diagram; for clarity, the
results are organized by parameter region, rather than by technique. This section provides the
essential calculational details supporting results announced in Ref. [22]. We conclude in Section
V, with a summary and discussion of open problems, both theoretical and related to comparisons
with real materials.

II. Broken symmetry states

II-1. Strong coupling limit
Although most previous studies of the extended Hubbard model have focused on the weak-

coupling limit, we shall later see that perturbation theories based on the strong-coupling limit
provide considerable semi-quantitative insight into the various phases of this model. Further,
elementary strong coupling considerations provide insight into nearly all the broken symmetry
phases we shall encounter. Accordingly, we shall begin our discussion with some qualitative
remarks on broken symmetries in the strong coupling regime. Since we are ignoring electron-
phonon interactions, the competing phases are limited to charge-density-waves (CDW), spin-
density-waves (SDW), superconductivity (SC), and phase separation (PS). In the limit of very
strong Coulomb interactions, i.e., jU j; jV j À t, one can easily characterize the CDW, SDW, and
PS states in “real” space. This limit formally coincides with the t = 0 limit, which is sometimes
called the “classical” (because the quantum effects due to hopping vanish) or “atomic” (because
the individual sites are isolated) limit.

In a CDW state, the electron density is not uniform but has a periodic modulation. One
CDW eigenstate of the extended Hubbard model with t = 0 in the half-filled case (½ = 1) has
the form shown in Fig. 1(a). Clearly, whether this state will be the ground state depends on the
values of U and V : for instance, for both U and V positive and U < 2V , one can show that this
CDW is indeed the ground state at half-filling.

Similarly, in an SDW state, the spin density that varies from site to site, leading to an
algebraic (antiferro-)magnetic ordering. For instance, for quarter filling (½ = 1=2), one t = 0
SDW eigenstate has the form shown in Fig. 1(b). In the standard parlance (which is based on
weak coupling), this state would correspond to a “2kF SDW” and a “4kF CDW”, since for lattice
spacing a the relationship between ½ = 1=2 and kF is kF a ´ ¼½=2, so that a 2kF variation has
period 4 and a 4kF variation period 2.

In a phase separated state, the ground state becomes macroscopically inhomogeneous, with
different spatial regions having different average charge densities. In Hubbard-like models, phase
separation is usually driven by the absence of long-range Coulomb interactions and typically occurs
for attractive (i:e:, negative) values of U and V , so that the electrons cluster together in order
to gain as much negative potential energy as possible. In the extended Hubbard model, one can
readily identify two types of phase separated configurations, which we shall call PS1 and PS2.
In a static PS1 state, electrons form a cluster of singly occupied sites, as shown in Fig. 1(c), while
in a static PS2 state, electrons form a cluster of doubly occupied sites, as in Fig. 1(d). Obviously,
the PS2 state would be favored for negative U and negative V , whereas the the PS1 state would
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FIG. 1. Real space configurations corresponding to certain broken symmetry phases in the “strong cou-
pling” (t = 0) limit; (a) a “2kF ” CDW state for ½ = 1; (b) a co-existing “2kF SDW” and “4kF

CDW” state at ½ = 1=2; (c) a PS1 phase separated state; and (d) a PS2 phase separated state.

be favored for positive U and negative V .
When the hopping t is included, the simple real space configurations corresponding to the

strong coupling “cartoons” in Fig. 1 are no longer eigenstates of the Hamiltonian, and we must
undertake detailed calculations to study the competition among possible broken symmetries. These
will be discussed in the next section.

II-2. Weak coupling limit
Since the results in this regime are well known and nicely summarized in Ref. 7, we will

recall briefly only a few key points, saving more detailed comments for later comparisons with
strong coupling and numerical results. In the limit of weak coupling (jV j=t; jU j=t À 1), the non-
interacting hopping term dominates, and for low energies the physics is governed by properties
near the Fermi surface, which for 1D consists of only 2 points, i.e., §kf (“left-going” and “right-
going” particles). In this regime the bandwidth can be taken (formally) to infinity. This amounts
to take a continuum limit in which the momentum dependence of the Hamiltonian linearized. The
resulting theory is mapped into an effective theory of relativistic fermions, the Luttinger model
and its corrections. Interested readers can find the one-to-one correspondence between coupling
constants in this “g-ology” picture and the extended Hubbard model in Table I of reference 7.

An alternative, and more general approach to this problem, is offered by bosonization
[10; 21; 23-25] In the bosonized Hamiltonian, the charge degrees of freedom separate from the
spin degrees of freedom, if one ignores terms that are irrelevant in the renormalization group
sense. The backward scattering affects only the spin-density waves and the umklapp scattering
(in which electrons of opposite spin cross the Fermi surface in the same direction) affects only
the charge-density waves, so that these two kinds of collective mode do not mix.

By determining which of the various correlation functions dominates in a given region of
parameter space, the “g-ology” or bosonization approaches can construct a phase diagram, which
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predicts CDW, SDW, and both singlet and triplet superconducting phases. Although bosonization
schemes can be developed to include higher order commensurability effects, in the simplest “g-
ology” approach the half-filled band is singled out as the only band filling for which umklapp
effects are significant. All other band fillings – including the case of quarter-filling, which as
we shall see is of particular interest for the extended Hubbard model – are effectively “incom-
mensurate.” In this respect, as well as in the absence of any indication of phase separation,
the (lowest-order) weak coupling, continuum results differ from the full lattice calculations we
describe in the sequel.

III. Numerical approaches

While in both strong and weak coupling limits one can perform quite well analytical analysis
on various broken symmetry phases, numerical approaches are called for when the hopping ampli-
tude is comparable to Coulomb interactions, the so called intermediate coupling case. Two well
developed numerical techniques were used in our studies: the quantum Monte Carlo simulation
and the exact diagonalization of the Hamiltonian.

III-1. Quantum monte carlo simulations: correlation functions and susceptibilities
In weak coupling theories, the phase diagram of interacting electrons is studied by determin-

ing the character of the dominant fluctuations in a given region of parameter space. To generalize
this approach for arbitrary coupling, we need to study the behavior of correlation functions and
susceptibilities as functions of the parameters and the system size. To measure these quantities,
we use the world-line quantum Monte Carlo, as described in Ref. 26, and thus work in the canon-
ical ensemble. We investigate the behavior of the charge-charge and spin-spin correlations as we
increase the lattice size and lower the temperature. Explicitly, we calculate the Fourier transform
of charge-charge correlation:

C(q) =
1

N¯

Z ¯

0

d¿
NX

i;j

h(ni"(¿) + ni#(¿))(nj"(¿) + nj#(¿))ieiq(i¡j) (2)

where

q =
2¼

N
(0; 1; :::;N ¡ 1): (3)

In the perfect CDW state for ½ = 1=2 as shown in Fig. 1(a), C(q = 4kF = ¼) diverges as
N increases, whereas in the phase separated states (both PS1 (Fig. 1(c)) and PS2 (Fig. 1(d)),
C(q = 2¼

N ) diverges. In addition to the charge correlations, we study also the zero-frequency
CDW susceptibility, defined by:

Â
CDW (q) =

1

N¯

Z ¯

0

d¿
NX

i;j

h(ni"(¿) + ni#(¿))(nj"(0) + nj#(0))ieiq(i¡j) (4)

To study the SDW phases, we examine the spin-spin correlation function and the zero-
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frequency SDW susceptibility, respectively defined as:

S(q) =
1

N¯

Z ¯

0
d¿

NX

i;j

h(ni"(¿) ¡ ni#(¿))(nj"(¿) ¡ nj#(¿))ieiq(i¡j) (5)

and

ÂSDW (q) =
1

N¯

Z ¯

0
d¿

NX

i;j

(ni"(¿)¡ ni#(¿))(nj"(0) ¡ nj#(0)) > eiq(i¡j) (6)

We expect, for instance, that for ½ = 1, ÂSDW (q = ¼) should diverge in the SDW phase
but be very small in both the CDW phase and the phase separation regions.

To distinguish the two distinct phase separated phases (PS1 and PS2) we cannot simply
use the criterion that C(q = 2¼

N ) diverges, because it does so in both phases. Hence, we use
a histogram of site occupation numbers [14]. Since the total number of particles is fixed in the
canonical ensemble, we measure particle occupations in a certain “window”, i:e:, a certain number
of adjacent sites. For a uniformly distributed charge density, the histogram will have a peak at
n = ½. For the PS1 state, it will have peaks around n = 0 and 1. For the PS2 state, it will have
peaks around n = 0 and 2; we will present the results in our later discussion.

Most of our QMC simulations were carried out on lattices of up to 64 sites and at tem-
peratures down to T = 0:0625 in the units t = 1, and we have checked in several cases using
longer chains and lower temperatures that our results are in the thermodynamical limit within
QMC statistical errors.

III-2. Exact diagonalization studies: luttinger liquid parameters and superconducting order
parameters
Our exact diagonalization calculations used a Lanczös algorithm [27]. We obtain the ground

state energy and eigenvector and then calculate the critical exponent, K½, based on the Luttinger
liquid theory. The term “Luttinger liquid” was coined by Haldane [21], based on the properties
of the Tomonaga-Luttinger model [28], to describe certain one-dimensional models of interacting
electrons whose properties differ sharply from ordinary Fermi liquids. As discussed by several
authors [21; 28-32], the characteristics of a Luttinger liquid include: (1) the vanishing of the quasi-
particle residue at Fermi surface, ZF = 0, reflecting the absence of a discontinuity at the Fermi
surface and its replacement by a power-law behavior (k¡kF )®, indicating a collective rather than
a quasi-particle-like behavior, with ® related to the asymptotic power-law decay of the Green’s
function at large distance, and dependent in detail on the interaction strength; (2) the existence of
gapless, collective excitations which, in the continuum limit, are describable by conformal field
theories with independent velocities for each of the gapless modes; and (3) the ability to express
all the correlation functions of the model in terms of a single exponent, K½. The charge-charge
and spin-spin correlation functions at long distance have power divergence with leading exponents
¹CDW = ¹SDW = ¡1¡K½, while the singlet and triplet superconducting pairing function have
¹SS = ¹T T = ¡1 ¡ 1=K½. Thus if K½ > 1, the superconducting fluctuations dominate whereas
if K½ < 1, the CDW and SDW fluctuations dominate. Since for a Luttinger liquid the dominant
fluctuations are determined exclusively by K½, we can determine the boundaries of the Luttinger
liquid regions (and hence most of the phase diagram) by plotting the contours of constant K½.
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Moreover, Luttinger liquid theory also relates bulk quantities, such as the compressibility
· and the Drude weight Dc, to K½ [32]. Specifically, the following relations among the central
charge c, the compressibility ·, the charge velocity vc, the spin velocity vs, and the Drude
weight Dc, were established for Luttinger liquids [30-32]: (i) E(N) = E1 ¡ 1

N2
¼c
6 (vc + vs),

(ii) K½ = ¼
2½2·vc, (iii) Dc = 1

¼K½vc, where N is the system size. To evaluate the discrete
compressibility we use

·¡1 = N2
e

e(Ne + 1) + e(Ne ¡ 1)¡ 2e(Ne)

4
(7)

where e(Ne) is the ground state energy per site at density ½ = Ne=N . A diverging · implies that
phase separation has occurred, and this can be used as a check of the Monte Carlo results for this
boundary line. To obtain the Drude weight, we calculate the finite-size corrections to the ground
state energy with twist on the boundary conditions [33; 34]. The charge and spin velocities were
obtained from the lowest frequency pole !l of the charge-charge and spin-spin response functions
[35] by, vl = !l(k1)

k1
, where k1 = 2¼

N and l refers to spin or charge. Therefore, we determine
directly both velocities without following adiabatically the relevant low-energy excitations. The
central charge was then obtained by fitting E(N) and using the conformal field theory prediction
for finite-size corrections to the ground state energy. For results presented in this article, we
performed exact diagonalization calculations on lattices of up to 16 sites. The boundary conditions
were imposed so that there is no degeneracy at Fermi surface for the non-interacting case and that
there will be no net current flow in the ground state.

In order to distinguish among different possible superconducting states, we have also cal-
culated various superconducting correlation functions in our exact diagonalization studies. The
superconducting pairing correlation is defined by:

Plm = h¢y
l¢mi (8)

Here ¢l is a pairing operator:

¢l =
1p
N

X

i

ci+l"ci#; (9)

where l is a displacement vector on the lattice. Pair operators of various symmetries can be
constructed from linear combination of ¢l’s, including nearest-neighbor singlet (¢s = ¢x +
¢¡x), nearest-neighbor triplet (¢t = ¢x ¡ ¢¡x), and on-site singlet (¢0) operators. As we
discuss below, the behaviors of these pairing correlations as functions of band filling and Coulomb
interactions U and V reveal different dominant symmetry in the superconducting state in different
regions of parameter space.

IV. Phase diagram

IV-1. Overview of the phase diagram
In Figs. 2, 3, and 4 we provide an overview of the phase diagram of the extended Hubbard

model as a function of its three parameters U , V , and ½. Figure 2, which is redrawn from Ref.
[14], reproduces the well-known results for the half-filled case [7; 11; 12; 14]. Fig. 3 illustrates
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FIG. 2. The phase diagram of one-dimensional extended Hubbard model at ½ = 1. The dashed lines are
U = ¡2V and U = 2V , respectively. The thickness of the line separating the CDW/SDW regions
indicates the nature of the phase transition: the thin line at weaker coupling is a second-order
transition, whereas the thicker line for stronger coupling is a first-order transition. The symbols
are the QMC results with statistical errors. The “g-ology” results are fully consistent with this
figure in the weak coupling region (This figure is redrawn after Ref. [14]).

our results for the particularly interesting case ½ = 1=2, about which several studies have recently
appeared [18; 19] to complement the early studies [13] of this case. Finally, in Fig. 4 we show
the phase diagram as a function of band filling and V for a representative values of U .

In the following subsections, we present in detail the calculations which support these
figures. Our calculations include (1) perturbation theory analyses in various strong coupling limits,
where the kinetic part of the Hamiltonian is treated perturbatively and in the weak coupling limit,
where the kinetic energy dominates; (2) analytic calculations of a two-body problem to determine
the phase boundary between superconducting phase and PS1 phase; (3) quantum Monte Carlo
results to determine phase boundaries in the intermediate coupling region U , V » 4t; and (4)
exact diagonalization calculations to find the contours of constant K½ and the transition line where
K½ = 1 (and hence to determine the location of a superconducting phase) numerically on finite
lattices.

The limited number of finite lattices that can be studied in detail (N=4, 6, 8, 10, 12, and
16 for some of band fillings) does not in general permit us to do proper finite-size scaling. Worse
still, for a given band filling, the problems of requiring different boundary conditions for Ne = 4n
and Ne = 4n + 2 and the need to preserve up-down spin symmetry in fact mean that we often
have only two or three lattices available for a given band filling for calculating K½. Nonetheless,
our data do seem to indicate good agreement (5-10% errors) with the infinite system results. For
instance, for U = 8, V = 0; and ½ = 0:50, we find for N = 4;K½ ' 2:24 and for N = 8,
K½ ' 2:44, while in the thermodynamic limit, K½ ' 2:49.
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FIG. 3. The confirmed features of the phase di-
agram of the one-dimensional extended
Hubbard model for quarter filling (½ =
1=2). The symbols are our QMC results
with statistical errors through which
solid curves have been fitted to guide the
eye. The dotted/dashed lines labeled (a)
to (e) are various second-order, strong-
coupling perturbation theory results (see
the text for details).

FIG. 4. Contours of K½ on the ½ ¡ V plane
for U = 8t. Regions of phase sepa-
ration and the “CDW/HLL” region are
also shown (see text). Superconduc-
tivity exists in the regions between the
K½ = 1:00 contours and the phase sep-
aration regions.

Although weak coupling perturbation theory is perhaps more familiar and more commonly
used, our studies have shown that for the 1-D extended Hubbard model the strong coupling limit
provides much greater insight into the general behavior of the model in all parameter regimes,
including effects of changes in band filling. As we shall see, these analytical studies provide
an appealing and convincing framework for the phase diagram of the extended Hubbard model.
Basically, the results of jU j; jV j > 4t fall in the strong coupling regime, and the Monte Carlo
results are almost indistinguishable from second-order perturbation theory calculations, whereas
those for jU j, jV j < 4t fall in the weak coupling regime. Our results suggest that U = 1,
jV j = 1; and U = V = 0 are “fixed points” of this model in the RG sense.

To organize our subsequent discussion clearly, we divide it into three major subsections,
dealing with (1) U < 0; (2) U > 0, V < 0; and (3) U > 0, V > 0. Since it is less complex and
will allow us to introduce our approach in a relatively simple context, we start with the case of
negative U .

IV-2. The phase diagram for negative U
For negative U , the attractive on-site interactions cause electrons to tend to occupy the same
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site. From a variety of studies of the Hubbard and related models [37] in this regime, we expect
that, independent of ½, superconducting fluctuations will be the dominant homogeneous broken
symmetry and will compete with PS2-type phase separation. To confirm these speculations, we
follow the lead of Emery [16], who pointed out that in the large negative U limit, one can obtain
an effective Hamiltonian which, to the second order in the hopping t and to first order in V ,
takes the form of a Heisenberg model. Following Ref. 16, we first make the following canonical
transformation:

cyi# = (¡1)ibi# ci# = (¡1)ibyi#

cyi" = byi" ci" = bi"
(10)

so that

ni" = byi"bi" = ´i" ni# = bi#b
y
i# = 1 ¡ ´i#

Sy
i = byi"bi# = (¡1)icyi#c

y
i" S¡

i = byi#bi" = (¡1)ici"ci#

Si;z =
1

2
(´i" ¡ ´i#) =

1

2
(ni" + ni# ¡ 1)

(11)

The extended Hubbard Hamiltonian is transformed into:

H =¡t
NX

i=1;¾="#
(byi¾bi+1¾ + h:c) + jU j

NX

i=1

´i"´i#

+4V
NX

i=1

Si;zSi+1;z + (4V ¡ jU j
2

)
NX

i=1

Si;z ¡
jU j
2

NX

i=1

(´i" + ´i#) + NV

(12)

The average number of pseudoparticles h´i = 1
N

PN
i=1(´i" + ´i#) = 1

N

PN
i=1(ni" ¡ ni# +

1) = 1, provided we consider the spin-symmetric case (ni" = ni# in the original problem); thus
in terms of the pseudoparticles we always have a “half-filled” case here. Hence, in the strong
coupling limit jU j À t, this model can be mapped into the XXZ Hamiltonian in a magnetic field:

Heff =
NX

i=1

¡(JxSi;xSi+1;x + JySi;ySi+1;y + JzSi;zSi+1;z)

+

µ
4V ¡ jU j

2

¶ NX

i=1

Si;z + N

µ
V ¡ jU j

2
¡ t2

jU j

¶ (13)

with

Jx = Jy =
4t2

jU j Jz = ¡Jx ¡ 4V: (14)

After this canonical transformation, the order parameters in the original extended Hubbard model
can be expressed in the language of the XXZ model. Antiferromagnetic long-range order in the
z-direction means that there exists a non-zero value of m such that, hSi;zi = (¡1)im. In terms
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of the original electron operators, this corresponds to hnii = 1 + (¡1)i2m, i:e:, to a CDW state.
Similarly, ferromagnetic long-range order in the z-direction means hSi;zi = m, which leads to
hnii = 1+ 2m and one gets phase separation. A superconducting state would have non-zero h¢i
and this leads to non-zero hS¡

i i, i:e:, long range antiferromagnetic order in the x ¡ y plane.
Studying Eqs. 12 and 13, we see that the original band filling parameter ½ introduces

magnetic field effects in the spin model:
PN

i=1 Si;z in Eq. 13 is just 1
2N(½ ¡ 1). Hence for

the half-filled band there is no magnetic field, and the phase boundary between the CDW and
superconductivity occurs at V = 0, since here Jz = ¡Jx. This is shown in Fig. 2. As the band
filling decreases from 1, the increasing effective magnetic field will destroy the AFM order in
z-direction (and hence the superconductivity in the original model) unless the coupling Jz is large
enough to compensate for it. That means the phase boundary of superconductivity will move into
the V > 0 region as ½ < 1, which is confirmed by our numerical calculations, as shown in Fig. 5.

When Jz = Jx there is a first-order transition to a ferromagnetic state. In the Heisenberg
model, this corresponds to half of the system having spin up and half spin down, since the total
magnetization is conserved. In the extended Hubbard model, this corresponds to phase separation,
which is of the type PS2 since U < 0. Hence, the transition line in this limit is given by:

VPS = ¡2t2

jU j : (15)

Since a uniform magnetic field has little influence on the ferromagnetic state, the phase boundary
in the original electron variables should have little to do with band filling. The QMC results for
this phase boundary, which are exemplified by those shown in the lower left quadrant of Fig. 3,
are, for jU j > 4t, almost identical to these second-order strong coupling perturbation theory results
(shown in Fig. 3 as the dashed line labeled (e)).

FIG. 5. The “top” boundary of the superconducting phase in the U ¡ V plane for several values of ½.
As discussed in the text, for ½ < 1, the superconducting phase can occur over a wider range of
values of V .
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Finally, we note that for the negative U case, the critical behavior is determined by the
gapless excitation spectra of bound pairs. The conformal field theory predictions (Eq. 2-4), which
are valid for U > 0, can also be applied for negative U , by taking vs = 0 and vc as the group
velocity of a bound pair at the Fermi surface. For this case, we find C » 1 at fixed U = ¡8t
and 0 < V < 6t. The charge-charge correlation exponent at V = 0 agrees with the Bethe Ansatz
results, K½ = 1 at ½ = 1 and K½ » 2(1 + ½=2

p
1 + U2=16)¡1 at small densities. Note that

K½ ! 2 as ½ ! 0. Our numerical results show that this is also true at finite V .

IV-3. U > 0, V < 0

1.Strong coupling calculations
Again we begin with the strong coupling limit and note that for t = 0 the extended Hubbard

Hamiltonian can be written as

H =
NX

i=1

H(i) (16)

where

H(i)= Uni"ni# + V nini+1

=

µ
U

2
+ 2V

¶
ni ¡

µ
U

2
+ V

¶
(ni" ¡ ni#)2 ¡

V

2
(ni ¡ ni+1)

2:
(17)

In this limit, ni commutes with H, so the real-space configurations are eigenstates. In the present
case of negative V , an attraction between electrons on neighboring sites, and hence the electrons
will cluster together. For arbitrary band filling this leads to the existence of electron-rich and
electron-deficient regions of the 1-D system, i:e:, to phase separation. Importantly, as discussed
above, we can identify the two distinct types of phase separated states, PS1 and PS2, whose
properties we now study in somewhat more detail in preparation for later applications of the
results.

When V < ¡U=2, the system achieves the lowest energy by maximizing the number of
double occupancies, so ni" = ni# and ni+1 = ni, where Ne=2 sites are occupied while the rest
are empty. The total energy of this PS2 phase is

E =
U

2
Ne + 2V Ne ¡ 4V (18)

where Ne = ½N is the total number of electrons. For simplicity in Eq. 18 and for the remainder
of the text we assume that there are the same number of up spin electrons as down spin electrons;
other cases, which are of particular interest when magnetic field effects are included, can be dealt
with in a similar manner.

In contrast, when 0 > V > ¡U=2, the ground state is the PS1 phase with Ne singly-
occupied sites clustered together and energy

E = NeV: (19)
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Clearly, for t = 0 the transition between the two types of phase separated systems occurs
(in the thermodynamic limit) at U = ¡2V , independent of band-filling ½.

For t 6= 0 we use second-order strong-coupling perturbation theory to calculate the correc-
tions to the energies of both states. For the state PS2, the second-order correction to the ground
state energy comes only from the “surface” between the two phases; hence it is of O(1) rather
than O(N) or O(Ne) and is irrelevant in the thermodynamic limit, so that the energy of PS2 is
still given by Eq. 18. In contrast, in the state PS1 the correction arises throughout the volume
and hence is of order Ne = ½N » N . Using standard techniques [38], we obtain an effective
Hamiltonian on the occupied sites

H = V
X

i

nini+1 + J
X

i

(SiSi+1 ¡ 1=4nini+1); (20)

with J = 4t2=(U ¡ V ). Hence the ground state energy (using the Bethe Ansatz result [39]) is

E = Ne

µ
V ¡ 4t2 ln 2

U ¡ V

¶
; (21)

where Ne = ½N .
Equating the energies of the PS1 and PS2 states, we can determine the phase boundary

between them in the strong coupling limit as N ! 1 in the region U > 0, V < 0:

V = ¡U

2
¡ 8t2 ln 2

3U
: (22)

Thus, to this order in perturbation theory, there is no band-filling dependence for this phase
boundary. Finite-size effects and higher order corrections will change this result, but as we shall
see later it provides a remarkably accurate guide to our numerical results. This boundary is plotted
in Fig. 3 as the dashed line labeled (d).

For t 6= 0, the attraction represented by negative V can lead not only to phase separation but
also to superconductivity. Based on recent studies in related models [40], as well as earlier work
on the extended Hubbard model [12-14], we expect superconductivity to occur near the phase
separation boundary but at slightly less attractive values of V . We determine the superconducting
(SC) phase boundary numerically by calculating K½ on finite lattices using the Lanczös techniques
described above. This phase boundary is plotted in Fig. 3 for the 1/4-filled case. For other band
fillings, our calculations show that, as ½ ! 1, the phase boundary moves down towards the
U = ¡2V line for U > 0 (sandwiched by SDW and PS1 phases), and towards the V = 0 line
for U < 0 (sandwiched by CDW and PS2 phases).

To distinguish this superconductivity from phase separation, we can again use perturbation
theory to estimate the phase boundary. For U ! 1, we can readily show that the phase boundary
is Vc = ¡2t, since as our earlier manipulations on XXZ model show, for V < ¡2t, the ground
state has ferromagnetic long-range order, which corresponds to phase separation in the extended
Hubbard model. When U is finite, the total energy in the phase separated PS1 region is:

EPS = (Ne ¡ 1)

µ
V ¡ 4t2 ln 2

U ¡ V

¶
: (23)
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To study the superconducting phase, which consists of paired electrons, we focs on the
regime in which two particles form a bound state and hence have lower energy than two separate,
free particles. Thus we consider removing two electrons from the PS1 state and calculating the
total energy, EBS , of the two-particle bound state, which is determined by

2V

µ
1 ¡ EBS

U

¶
= (EBS ¡

q
E2

BS ¡ 16t2)

µ
1 +

1

U

q
E2

BS ¡ 16t2
¶

: (24)

At the SC=PS phase boundary, we also have

E = 2

µ
V ¡ 4t2 ln 2

U ¡ V

¶
: (25)

We obtain the SC=PS phase boundary by solving Eqs. 24 and 25 numerically; the resulting
boundary is depicted in Fig. 3 (the line labeled (c)).

From recent studies of phase separation in related models [40], we also expect the possibility
of forming three, four, or more particle bound states near the SC=PS phase boundary. We have
investigated these multi-particle bound states by performing exact diagonalization calculations on
finite lattices and using finite-size scaling. The results show that the region between superconduct-
ing state and phase separation, i.e., the region in which there exist multi-particle bound states, is
very small. For example, at U = 4t, we find a dilute gas of paired electrons for ¡1:61t < V < ¡t,
a four-particle bound state beginning at V ' ¡1:61t, and phase separation at V ' ¡1:7t; hence
the multi-particle bound states only occur in the small region ¡1:7t < V < ¡1:61t. This region
becomes still smaller as U increases, and we have chosen not to plot it in Fig. 3.

2. Weak Coupling: The limiting case U = 0
Since several of our strong coupling results diverge as U ! 0, we should show that it is

also possible to gain analytic insight into this weak coupling limit by considering explicitly the
case of U = 0. We start from the strongly phase separated region, with jV j À t. For U = 0, this
region will have all sites doubly occupied (i.e., it will be the PS2 state. Removing one electron
from this region leads to a gain of kinetic energy (-2t) and a loss of potential energy (2V), so
the instability to phase separation seems to occur at V = ¡t. However, the attractive interaction
can lead to a two-body bound state. Indeed, the critical value of V for forming a bound state is
V2c = ¡2t=(1 + 4t=U), which is 0 for U = 0 so the instability to the formation of pairs occurs
immediately for V < 0.

To find a more precise estimate, as a function of ½, of the value of VP S at which phase
separation occurs for U = 0, we adopt a mean-field variational argument, the motivation for which
comes from the known applicability of mean field theory to weak-coupling superconductivity and
the validity of which will be establish post hoc by agreement with our numerical results. Using
the wave function of the free electron gas as a trial state, we find the expectation value of H to
be

Evar = hHifree electron gas = ¡N

·
4t

¼
sin(kF ) + V ½2 ¡ 2V

¼2
j sin(kF )j2

¸
(26)

where kF = ¼
2½ is the Fermi momentum. The energy for the PS2 state is

EP S = 2V Ne ¡ 4V (27)
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Equating these two energies, we find the critical value of VPS as a function of ½ to be

VPS = ¡
4t
¼ sin(kF )

2½¡ ½2 + 2
¼2 j sin(kF )j2 (28)

which is ¡1:05870t for ½ = 1 and ¡1:05755t for ½ = 1=2. Our QMC numerical calculations
give critical values VP S=t = ¡1:15§0:05 and ¡1:05§0:05, respectively. We note that the ¡4V
term in Eq. 27, which vanishes in the thermodynamic limit, nonetheless contributes to finite-size
effects in Monte Carlo simulations and exact diagonalization calculations. Such effects can be
substantial for small lattices such as N = 12.

Once again, our analysis shows little dependence on band filling. In fact, from this vari-
ational calculation, the critical values of V are bounded between ¡1:05938t (for ½ = 0:69) and
¡t (for ½ = 0). Based on these estimates, we expect that the transition to phase separation to be
around V = ¡t for all band fillings, consistent with our numerical simulations.

If we turn on the interaction U and perform a similar calculation, we obtain the phase
boundary to be

V = ¡
4t
¼ sin(kF ) + U(1

2 ¡ ½
4 )

1 + 2
¼2 j sin(kF )j2 (29)

Around U = 0, it is not possible to determine accurately the phase boundary between PS1

and PS2, due to the statistical errors in the QMC and the limited number of lattices available in
the exact diagonalization studies. However, it seems clear that there will be no crossing between
PS2 phase and PS1 phase. We believe that both phases should extend smoothly to the U = 0
axis and join there at the same point.

3. Numerical Results
To confirm our approximate calculations, we determined several points on the SC=PS1

and PS1=PS2 phase boundaries using the QMC simulations discussed in previous section. These
points were obtained by studying the behavior of correlation and response functions. In Fig. 3
we plot the transition points determined from the QMC simulations. We see that for U > 4t, the
QMC results agree with our estimates from the strong coupling analyses to within the statistical
error bars.

Our exact diagonalization studies also permit us to determine the nature of the pairing state
in the regions of dominant superconducting fluctuations. From the renormalization group and
g-ology studies of case ½ = 1 [7], we know that the dominant pairing symmetry can be different
in different parameter regions; indeed, Fig. 2 shows the existence of and boundary between
singlet and triplet superconducting states at 1/2 filling. Using exact diagonalization techniques,
we have calculated the pairing correlation functions for on-site singlet, nearest-neighbor singlet,
and nearest-neighbor triplet pairing, as defined in Section III. A typical case is shown in Fig. 6.
As for ½ = 1, we find for all ½ that the dominant pairing for U > 0 is nearest-neighbor triplet,
while for U < 0, the dominant pairing is on-site singlet. However, the relative strengths of the
various pairings change substantially with ½.
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FIG. 6. Various superconducting pairing correlation functions (see text) from Lanczös exact diagonaliza-
tions versus band filling ½ for V = ¡0:50t, U = 0.

IV-4. U > 0, V > 0
The region of positive U and V is both the most directly relevant in terms of applications

to real materials and, for reasons that will become clear through our discussion, the most difficult
to study. Indeed, the two principal unresolved questions concerning the phase diagram – the true
nature of a possible “CDW” region at large U and V for incommensurate ½ and of a possible
superconducting region at large V and small U for ½ = 1=2 [18; 19] and possibly other values
of ½ [20] – both involve this region. In the ensuing discussion, we will examine these and other
issues using our strong coupling, QMC, and exact diagonalization methods.

As suggested by Fig. 4, for general positive U and V and small values of ½ the system
is a strongly correlated metal described by the Luttinger liquid theory. We shall focus initially
on values of ½ between quarter- and half-filling. A comparison of the phase diagrams depicted
in Figs. 2 and 3 shows considerable differences between these two cases. We begin by recalling
certain features of the familiar half-filled case.

For the half-filled case, both strong and weak coupling approaches give the phase boundary
between CDW and SDW as described by equation U = 2V . In the intermediate coupling region,
Hirsch [12] has studied CDW to SDW transition using quantum Monte Carlo simulations and
found some small corrections to the U = 2V phase boundary, which have been confirmed by
additional numerical/analytical work [15] and higher order perturbation theory [17]. Further, as
indicated in Fig. 2, the character of the phase “transition” changes as one goes from weak to
strong coupling [12; 14; 15]. To understand how the phase diagram changes as ½ decreases from
1, we start by considering two separate strong coupling limits: (1) V ! 1 and (2) U ! 1.
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When V ! 1, configurations in the ground state will have no electrons next to each
other. Spin-up and spin-down electrons can occupy the same site, but once they do they must stay
together forever to avoid the infinite potential energy V . Therefore the system has in effect no
spin degrees of freedom and behaves like spinless fermions. However, it still has charge degrees
of freedom, and a transition to a CDW is possible.

To study this possible transition we begin with the 1/4-filled case. A perfect CDW state at
½ = 1=2 has (among others with similar site occupancy but different spin arrangements) the real-
space configuration of electrons shown in Fig. 1(b) with energy E = 0. As noted previously, this
specific configuration (1) corresponds to both a “4kF ” CDW and a 2kF SDW; and (2) for V ! 1,
is degenerate with 2Ne+1 other configurations in which electrons occupy every other site but have
their spins oriented differently. When V becomes finite and for t 6= 0, however, this specific
configuration acquires lower energy from an effective attractive super-exchange interaction, and
the 4kF CDW and 2kF SDW coexist. To study the boundary between the ½ = 1=2 CDW and the
Luttinger liquid state, consider putting two electrons with opposite spins on top of each other; this
creates a “conducting” state with the configuration shown in Fig. 7(a), where double occupied site
behaves like a wall with an infinite potential (because V ! 1 so that the wave function must be
zero on the wall) but to the left and the right of the wall we have two free holes that move on a
lattice with an open boundary. Assuming that the original lattice had N sites and the two chains
separated by the doubly occupied site have, respectively, N1 and N2 sites, with N = N1+N2 +1,
we have that the energy of this state is

FIG. 7. Various strong coupling configurations at band fillings between quarter and half filling: (a) a
excited configuration with ½ = 1=2 and one double occupancy; (b) a configuration contributing
to the ground state at ½ = 5=8 for V À U=2 À t; (c) a configuration contributing to the ground
state at ½ = 5=8 for U À 2V À t; (d) a second configuration contributing to the ground state at
½ = 5=8 for U À 2V À t; note the presence of two (soliton/domain wall) defects; (e) a potential
“phase-separated” configuration for small U and ½ = 1=2.
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E = U ¡ 2t ( cos(k1) + cos(k2) ) (30)

where k1;(2) ' ¼
N1; ( 2)

. The lowest energy occurs when k1;2 ! 0; this can be achieved in the

thermodynamic limit: N1;2 ! 1. At this value of k1;(2), we have E = U ¡ 4t, so the transition
to the CDW occurs at U = 4t.

For finite lattices, k1 and k2 are different from zero, and the transition from the Luttinger
liquid to the CDW may occur at smaller values of U . It is straightforward to show that the critical
value of U is smaller by an amount of 8¼2t

N2 . For example, for N = 16 we get U = 3:69t.
Apart from their utility in analyses of numerical data, such finite-size effects are important

for the insight they provide into the behavior as ½ increases from 1/2 to 1. We recall that for
V ! 1, at half-filling the ground state is a period 2 CDW for any value of U . For ½ > 1=2, the
V ! 1 ground state must contain more than one doubly occupied site and hence it is divided into
many small regions, bounded by the doubly occupied sites, in which the electrons are “confined”.
Inside these smaller regions, the individual transitions to the CDW occur at values of U < 4t
(as our above finite-size results show), and these values decrease as a function of ½ from 4t at
½ = 1=2 to 0 when ½ = 1 (i.e., the configuration in Fig. 1(a) is the ground state for V ! 1 for
any value of U). For finite V , a second-order perturbation theory calculation yields

U = 4t +
8t3

V 2
; (31)

and we see that this line, which is shown in Fig. 3 (the dashed line labeled (a)) for the case of
½ = 1=2, is very steep.

We can also study the boundary between the Luttinger liquid and the CDW region in the
limit U ! 1, by treating the Hamiltonian as a spinless fermion model, which in turn, can be
mapped into XXZ model. For V > 2t, the model is in the anti-ferromagnetic Ising region, which
corresponds to the CDW state. For V < 2t, the model becomes XY-like, and there is no gap in
excitation spectrum. Here the model belongs to the Luttinger liquid class. Hence the transition
point for the CDW to TLL is at V = 2t. As U decreases from infinity, we expect the transition
line to move to increasing V , and indeed a second-order perturbation theory calculation for finite
U gives the boundary

V = 2t +
2t2

U ¡ 4t
(32)

This line is also shown in Fig. 3(a) as the dashed line labeled (b). For 4t < U < 8t, we used
QMC simulations to determine transition point. The QMC results were not far from the curve
described by Eq. (32), even for U < 8t. For example, QMC estimates the transition point to be
V = (3:20 § 0:15)t at U = 6t, while Eq. (32) gives V = 3t. Interpolating the QMC results and
our two strong coupling curves Eqs. (31) and (32), we obtain CDW phase boundary for the case
of 1/4-filled as shown in Fig. 3.

The nature of the “CDW” region for other values of ½ seems more problematic: the range
of the Coulomb interactions in the extended Hubbard model leads to commensurability effects
with the lattice only for ½ = 1=2, so any CDW for ½ > 1=2 is incommensurate. In ordinary
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weak-coupling analyses, such incommensurate CDW’s, while possibly having a single particle
gap, also possess “phason” modes, which in the absence of other effects (e.g., impurity trapping,
disorder) lead to collective (“sliding”) CDW motion and “Fröhlich” superconductivity.

To clarify this situation for intermediate and strong coupling, we perform extensive QMC
simulations and establish that, for large U(' 8t), the CDW susceptibility exhibits a strong peak at
q = ¼ for V ¸ U=2 for all ½ greater than 1/2. This peak increases as a function of N , reflecting
a transition to some sort of long-range order with spatial period 2. The boundary of the “CDW”
region versus ½ for U = 8t are shown in Fig. 4. As discussed above, for the large V part, the
phase boundary moves towards the U = 0 axis as ½ approaches 1 from 1=2. Our numerics show
that for 1=2 < ½ < 1, this boundary is above U = 2V , i.e., it moves up from the half-filled value
for ½ < 1.

Further insight into this “CDW” region for ½ > 1=2, again comes from the strong-coupling
limit. We start with U , V À t and consider separately the two cases V À U=2 À t and
U À 2V À t. For V À U=2 À t and ½ > 1=2, the ground state will consist of an ordered
“picket fence” of particles on every other site plus the appropriate number of double occupancies
to reach the required electron density (see Fig. 7(b)). At t = 0, all orderings of the double
occupancies are degenerate, so in general we expect a disordered array of double occupancies
on the background “picket fence”. Hence the charge susceptibility is expected to show a period
2 (q = ¼) response, with no other prominent feature. Nonetheless, the charge gap, defined as
¢c(N ;Ne) = E(N ;Ne + 1) + E(N ;Ne ¡ 1) ¡ 2E(N; Ne) is zero. Second-order perturbation
theory shows that these double occupancies can move, albeit with greatly reduced hopping (teff '
t2=(2V ¡U)), so that the phase in this region can best be thought of as a “heavy” Luttinger liquid
(HLL), with greatly reduced conductivity.

Turning to the case U À 2V À t, we see that here double occupancies are essentially
forbidden, and that for ½ > 1=2, the excess electrons beyond the “picket fence” on alternate sites
must go between the occupied sites. This situation is illustrated in Fig. 7(c). Again we can
readily find that the charge gap is 0, since the energy is (to leading order) directly proportional to
the number of “interstitial” electrons, E(N ; ;N(½ ¡ 1=2)) = 2N(½ ¡ 1=2)V . In fact, as in the
case of the spin 1/2 anti-ferromagnet and as indicated in Fig. 7(d), a single “interstitial” electron
corresponds to two excitations, which can propagate independently along the chain with hopping
t. Reflection on Fig. 7(d) shows that these excitations are “domain walls”, or “solitons”, which
separate the two possible orderings (even sites or odd sites) of the ½ = 1=2 CDW, and which can
therefore be expected to wash out this ordering away from quarter-filling. Indeed, in this region
our QMC data show no peak at ¼ away from ½ = 1=2. The system is behaving as a “soliton
Luttinger liquid”, a concept which has recently been suggested and explored in the context of
infinitely repulsive, long range interactions [41].

For band filling ½ < 1=2, there is no CDW state, and the system is simply a Luttinger
liquid. As we discussed earlier, the properties of Luttinger liquid are characterized by the exponent
K½. For some special cases, K½ can be obtained analytically. At V = 0, the dependence of K½

on the density ½ and U=t has been discussed in detail by Schulz [30]. For the quarter-filled band
case at large U , the known results [42] for the XXZ model can be used to obtain:

K½ =
1

2 + (4=¼) sin¡1(V=2t)
: (33)

Further analytic insight can be obtained by noting that the exponent K½ ! 1=2 in the limit
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½ ! 0 for any value of V . For U À t and V < Vc, the extended Hubbard model reduces to the
t ¡ J Hamiltonian with J = t2=(U ¡ V ) for which K½ ! 1=2 as ½ ! 1. Therefore, all contour
lines 1=2 < K½ < 1 should connect the two points Vc at ½ = 1 and V = 0 at ½ = 0. This is
exactly the behavior seen in Fig. 4.

All these analytic considerations provide guidance to, and are consistent with, our numerical
calculations of K½, which are plotted in Fig. 4. Note that the contour lines K½ = 1=2 behave
differently above and below ½ = 1=2. In fact, the general trend below quarter filling is similar to
the spinless fermion problem, while above ½ = 1=2, all contour lines move toward Vc, avoiding
the TLL=CDW transition boundary line at 1/4-filling. To support further the statement that
outside the regions discussed above the system behaves as a TLL, we have calculated the central
charge c by fitting the finite-size corrections to the ground state energy at density ½ = 1=2. We
find c » 1 for U = 8t;¡1 < v < 2 and for U = 0, 0 < v < 4.

V. Summary and open issues

Our combined numerical and analytic investigation of the one-dimensional extended Hub-
bard model has revealed a phase diagram exhibiting complex structure as a function of the Coulomb
interactions U and V and the band filling ½. As shown in Figs. 2, 3, and 4, which provide the
most succinct overview of our results, in much of its parameter space the model behaves as a
strongly correlated metal – the “Luttinger liquid” – but there are also large regions of parameters in
which various broken symmetry phases are realized. We shall organize our remaining comments
around these different types of broken symmetry.

For positive U and V , charge density wave phases compete with the Luttinger liquid.
Strong-coupling perturbation theory provides accurate semi-quantitative determination of the TLL/
CDW boundary, which is confirmed by QMC simulations. The CDW phases exhibit strong
band-filling dependence, with the true insulating states occurring only for the commensurate
values of ½ corresponding to half- and quarter-filling. Nonetheless, for 1=2 < ½ < 1 and V À
U=2 À t, we found a “mixed” state, in which apparent long-range charge order (as shown by the
divergence of C(q = ¼) as N ! 1) coexists with a weak conductivity mediated by the motion
of disordered local pairs. A detailed understanding of this “heavy Luttinger liquid” regime is one
of the interesting open problems identified by our study.

For large negative U and V , the phase separated states PS1 (for V À 0; U > 0) and
PS2 (for U , V À 0) become the ground state. As indicated by Figs. 2 and 3, the boundaries
of these phases show relatively weak band-filling dependence and can again be quite accurately
determined by strong-coupling arguments, confirmed by QMC simulations.

From several perspectives, the occurrence of superconducting phases is one of the most
interesting features of the extended Hubbard model. Intuitively, one expects these superconducting
phases to be adjacent to the phase-separated regions because attractive interactions exist in both
phases; this has been found in a number of models, in both one and two dimensions (see, e.g.,
[40]). As shown in Figs. 2 and 3, our results confirm this expectation for the familiar “negative
U” superconducting phases, both singlet and triplet. The band-filling dependence of the boundary
of the superconducting phase is illustrated in Fig. 5, which quantifies the intuitive result that
the boundary moves to more positive values of V for lower band fillings because it is easier
for the paired electrons to “avoid” occupying neighboring sites at small ½. Although one might
anticipate that “direct” attractive interactions – i.e., negative values of U and V – are needed
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for electron pairing, previous work [40] has shown that these direct attractive interactions are not
a necessary condition for superconductivity, and that it is possible to find superconductivity if
there exists a mechanism, such as long-range Coulomb repulsion, that causes fluctuations in the
phase-separated state. In the case of the one-dimensional extended Hubbard model, there exists
another phase separated phase, as discussed by Penc and Mila [19], and by Sano and Ono [20].
This third phase separated state, PS3, has been argued [19] to exist for large positive V and
jU j ' t, in which one portion of the lattice consists of alternating doubly-occupied and empty sites
which are frozen in place by the large positive V while the remainder of the electrons can move
throughout the rest of the lattice (but avoiding occupying neighboring sites) to gain maximum
kinetic energy. It was suggested that near the PS3 phase separated region there may be such a
region of superconductivity. Recently, we have studied the PS3 phase extensively [43] and we
found that the PS3-type phase separation extends to much lower values of V than reported by
other groups [19; 20]. As a result, the Luttinger liquid exponent K½ does not exceed one before
phase separation, and hence the ground state is not dominated by superconducting fluctuations.

One further issue that remains unresolved by our study is the precise boundary of the
(negative U , positive V ) region in which the system behaves as a Luttinger liquid from the
perspective of the charge degrees of freedom but exhibits a gap in the spin excitations (the
“Luther-Emery phase”). In the absence of a careful finite-size scaling analysis, which our limited
number of lattice sizes presently precludes us from undertaking, determining this phase boundary
for general ½ represents an interesting open problem.

Finally, let us recall briefly some possible applications of our results to real materials. We
noted in the Introduction that in contrast to the pure Hubbard model, the extended Hubbard model
permits binding of particle-hole pair excitations and hence can describe excitonic effects known to
be important in many novel electronic materials [1; 4]. Further, for the extended Hubbard model
there is a region of parameters in which K½ < 0:50, and therefore we can expect strong diffuse X-
ray scattering at 4kF [44]. To make detailed comparisons with data from real materials, however,
it is typically important to include electron-phonon (e¡p) interactions as well, and one is naturally
led to the class of “Peierls-extended Hubbard” models [1]. Importantly, the (e ¡ p) interactions
permit the existence of additional broken symmetry states – for example, “bond order wave”
(BOW) and “spin Peierls” (SP) states – which can have LRO in the ground state. The interplay
among and possible coexistence of these many broken symmetries can have dramatic and varying
effects, particularly in materials away from half filling [45]. The detailed explanations of the many
novel phenomena observed in the quasi-one-dimensional, strongly correlated materials remains the
most significant open issue, one which will form the basis of many further investigations.
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