
High-Performance Intrusion Response Planning on

Many-Core Architectures

Stefano Iannucci

Distributed Analytics and Security Institute

Mississippi State University

Starkville, Mississippi

Email: stefano@dasi.msstate.edu

Qian Chen

Department of Engineering Technology,

Computer Science Technology

Savannah State University

Savannah, Georgia

Email: chenq@savannahstate.edu

Sherif Abdelwahed

Electrical and Computer Engineering

Mississippi State University

Starkville, Mississippi

Email: sherif@ece.msstate.edu

Abstract—The quantity and sophistication of cyber attacks
have increased year by year, thus it is infeasible to manually
process Intrusion Detection Systems (IDSs) alerts. Intrusion
Response Systems (IRSs) extend IDSs by providing automatic
protection mechanisms. The core of an IRS is its planning
algorithm, in charge of selecting the best response action to
counter the detected attacks. However, the planning algorithm
has to be carefully designed and implemented in order to exhibit
a low overhead and not to compromise the scalability of the
protected system. In this paper we present the performance
evaluation of an IRS based on Markov Decision Process (MDP),
which leverages many-core co-processors. Such an IRS produces
optimal long-term response policies evaluated according to a
multi-criteria objective function. We show that, despite the
complexity of the MDP modeling, the proposed IRS is able to
protect large systems while introducing little to no overhead on
the protected hosts.

I. INTRODUCTION

Recently, massive attacks directed to computer systems are

becoming more sophisticated. According to the Akamai’s state

of the Internet 2015 Q2 Report [1], the number of recorded

attacks is more than doubled compared with a year ago. Half

of detected Distributed Denial of Service (DDoS) attacks were

launched by multi-vector attacks. The complexity of modern

attacks and computing systems attacks targeting at makes it

difficult and sometimes infeasible to manage through manual

intervention, even if they are readily detected and signaled

by an Intrusion Detection System (IDS). Therefore, there

is a strong need to develop more effective approaches for

countering attacks through an automatic Intrusion Response

System (IRS) aimed at detecting and mitigating cyber attacks

with little or no human intervention.

In the early 2000s, most IRSs were implemented using

a static mapping between the detected attacks and a list of

perspective responses [24]. When using a static mapping,

the responses used to protect against certain attacks remain

the same until intrusions expose the inadequacy of current

protection mechanisms. System administrators must therefore

manually upgrade the current response mechanisms period-

ically. This manual upgrading causes a significant delay of

protection. Research on automatic IRSs therefore shifted on

dynamic IRSs, that are capable of deciding which action to

take according to the detected attacks types, to the set of

candidate responses and to a list of possibly conflicting criteria

(e.g., response time and cost). Several decision models for

dynamic IRSs have been proposed (e.g. [17], [24], [21], [9]),

but most of them do not consider the notion of system state,

which is fundamental to compute a measure of the current

hazard level of the system. Knowing the system state allows

the IRS to either select the best immediate action to take, or

to plan for a long-term response policy, that is, a sequence

of actions that is able to drive the system back to normal

conditions.

Unfortunately, when system states are considered in the

decision making process, the IRS has to deal with a state space

cardinality exponential in the number of the attributes used

to describe the protected system. Since timeliness is always

crucial for a defense action to be effective [4], an efficient

implementation of the planning algorithm is required for the

IRS to protect large systems. In this work we evaluate the

planning performance of a Markov Decision Process (MDP)

[18] based IRS. We show a comparison between the planning

time obtained using the optimal Value Iteration (VI) algorithm

[5] and the sub-optimal rollout-based Monte-Carlo planning

algorithm named UCT [15], both of them implemented in the

state of the art BURLAP [2] library. Furthermore, as the main

contribution of the paper, we propose, to the best of our knowl-

edge, the first multi-threaded implementation of VI specifically

optimized to run on the Intel MIC architecture [10]. We

show that the execution of the VI planner on Intel Xeon Phi

provides 2x speedup over its execution on a standard Intel

Xeon platform and that the automatic vectorization provided

by the icc compiler plays a fundamental role in increasing

the performances. The evaluation of the effectiveness of the

response policies planned by the decision making algorithm is

out of the scope of this paper. The interested reader can find a

thorough effectiveness evaluation in our previous work [12].

The paper is organized as follows: Section II discusses

related works on performance evaluation of IRSs; in Section

III we provide a background on MDP and on VI; in Section IV

we show how MDP can be used to model a system protected

by the IRS; in Section V we briefly introduce the testbed

and the Intel MIC architecture and then we compare the

performance of (i) the single-threaded VI and UCT algorithms

and (ii) of the multi-threaded VI algorithm executed on Intel

Xeon CPUs and on Intel Xeon Phi, comparing the latter with

a non-vectorized version. Section VI concludes the paper and

outlines future works.

II. RELATED WORKS

In this section we describe relevant works in the field of

dynamic IRS with a specific focus on decision making and

performance evaluation. Not many works in literature employ

a stateful decision making process and very few of them

provide a performance evaluation. All the reviewed IRSs focus

either on network-based response actions such as blocking or

throttling the offending source IP address or on system-based

response actions such as system rebooting or data migration.

The former typology provides planning times in the order of

milliseconds because they use a very limited set of response

actions and have to be compatible with a deployment in-

line with the network flow. The latter are instead higher-level

IRSs, which are not deployed in-line with the network flow.

Their planning times are in the order of seconds or minutes

because thet must evaluate a possibly very large set of different

conflicting response actions deployable on a possibly large set

of system components, including eventual firewalls. Moreover,

the available response actions in this latter case usually have

an execution time of minutes (as in the case of the system

reboot) or hours (as in the case of the data migration).

In [24] the authors represent a computer system by model-

ing: (i) the executed services; (ii) the system users; (iii) the

network topology; (iv) the firewall rules. The model is used

to find, given a dependency tree between the entities, the best

firewall rule to apply in case of a detected attack. The best

response is selected considering that very often the application

of an additional firewall rule may interfere with the normal

system operativeness. Therefore the response which provides

the lowest penalty to the normal operativeness is applied. A

performance assessment on the realized prototype revealed an

optimization time of 34 seconds for a model composed of 35

resources distributed over five subnets.

A Partially Observable MDP (POMDP) is used in [27] to

model a IRS able to plan optimal response policies. Since

the POMDP is subject to an exponential growth of the states

according to the number of the considered attributes, the

authors propose a hierarchical decomposition to reduce the

computational complexity. This work, however, does not fully

exploit the potentialities offered by the MDP framework;

the response actions rewards are statically defined (therefore

simulating a static attack-response mapping) and long-term

plans are not considered. The performance of the proposed

approach are evaluated considering spaces characterized by

up to 100 attributes. The authors show that the proposed

hierarchical decomposition is able to reduce the planning time

of 50% in the considered scenario.

In [17] the authors evaluate benefits and risks of a reaction,

together with potential damages caused by the attack in case of

no reaction. Penalty costs are modeled as Service Level Agree-

ment costs related to the importance of a provided service. The

performance of the developed prototype are measured in terms

of the time needed to parse the alert generated by the IDS and

to select the optimal response action among a set of three

(none, rate-limit IP, block IP), for which it takes 0.1 seconds

for a system of any size.

ADEPTS [11] focuses on restricting the effect of the intru-

sion to a subset of the services by maximizing the availability

of the system at the expenses of the features compromised by

the attack, which are isolated from the rest of the system.

In [23] the authors propose an IRS that takes into consider-

ation the stochastic nature of the detections made by the IDS

and the response action is only triggered if the confidence level

of the detected attack is greater than a specified threshold. Re-

sponse actions are manually mapped to known attack patterns

and the best response action is chosen based on its impact on

the system.

In [26] the authors introduce the concept of system state

using an MDP for the response selection process of an

autonomic IRS. However, they do not try to solve the MDP in

order to obtain the optimal long-term response policy, rather

they define an utility function that, given the current state

and an action to evaluate, compares each possible future state

reacheable by executing the considered response action. This

approach can only guarantee local optimal response action

selection because the look-ahead is limited to a single action

and therefore it does not take full advantage of a stateful

model. The work has been then extended in [25] with the

concrete implementation of the approach, but the MDP model

has been replaced with a stateless utility function.

Neither [11], nor [23], nor [26] provide any performance

evaluation of the proposed approach.

III. MDP BACKGROUND

A Single-Agent Discrete-Time MDP is a stateful and prob-

abilistic approach to model the behavior and the run-time

dynamics of a system. An MDP [5] is a tuple 〈S, A, P, R, γ〉.
The symbol S represents the state space that the agent can

navigate and sk ∈ S represents the agent state at discrete

time k. A common practice when programming MDPs is to

characterize each state with a number of attributes so that a

specific attribute configuration univocally maps with a given

state. A is the finite set of actions available to the agent to

navigate the state space. Specifically, by executing at time

k an action ak ∈ A in the current state sk ∈ S, the agent

moves to a successor state sk+1 ∈ S. The transition dynamics

from the current to the next state are given by the transition

probability function P . This function specifies, for each source

state sk ∈ S, for each destination state sk+1 ∈ S, and for

each action ak ∈ A, the value P (sk, ak, sk+1), that is, the
probability value that by executing the action a in state s at

time k, the resulting state will be sk+1. Every time an action

is executed, the MDP agent is rewarded with a bonus (or

penalized with a cost), according to the reward function R.

That is, Rk = R(sk, ak, sk+1) represents the reward that the

agent will earn (or the cost the agent will pay) for executing

at time k the action a in state sk and being taken to some

state sk+1. Some MDP models use a different reward function,

based only on sk and ak and not considering sk+1. Since the

entire model is probabilistic, it usually makes sense to give

more reward to actions executed in the short-term period than

to actions executed in the long-term period because the former

are more likely to be executed, while the execution of the

latter is dependant on the achievement of the state in which

they are executable. To this end, MDPs are characterized by a

γ discount factor, usually defined in the interval [0, 1], which
specifies how much short-term rewards should be preferred

over long-term rewards.

The overall behavior of the agent is described by a deter-

ministic or stochastic policy π. When π is deterministic it

univocally specifies, for each sk, the action ak that the agent

must execute. When π is probabilistic it specifies a probability

distribution such that π : S ×A → [0, 1]. The objective of the

agent is to find a policy π∗ such that the discounted reward

Rk =

∞∑

j=0

γjRk+j+1 (1)

is maximized.

Several optimal and sub-optimal algorithms for solving

MDPs have been proposed (e.g., [5], [15], [20], [16], [14]), but

one of the most commonly used remains the Value Iteration

(VI) algorithm [5] because of its simplicity. It is based on the

concept of state-value function Vπ(sk) = Eπ[Rk|sk], that is,
the expected reward achievable by the agent starting from state

sk and then following policy π. The base step of the algorithm

is to assign an initial random state-value V 0 to all the states

and then to execute the iterative refinement process described

in [6]:

V i+1(sk) = max
ak∈A

R(sk) + γ
∑

sk+1∈S

P (sk, ak, sk+1)V
i(sk+1)

(2)

The sequence of functions V i converges linearly to the optimal

value V ∗ in the limit and provides thus the expected maximum

reward obtainable by following the optimal policy π∗ from

state sk.

IV. SYSTEM MODEL

The MDP framework can be used to describe a system and

its behavior when subject to control actions planned by an IRS.

The system is indeed statically described by its corresponding

MDP’s state space and dynamically described by the MDP’s

actions and associated transition matrix, that rule how the

system evolves over time. The MDP reward, as well as the

γ parameter, do not take part in the system description, rather

they are used at planning time in order to choose the best

response action to execute on a given state.

We model a system state by joining two macro-attributes:

(i) the current attack vector p and (ii) the system variables v.

The first contains as many variables as the number of attacks

detectable by the attached IDSs and each variable pi ∈ p

represents the probability value that the system is currently

under attack i, while the second represent the current system

status. We characterize each action ak ∈ A with pre-conditions

and post-conditions: the former are boolean expressions on the

state attributes, that is, they identify a subset of the state space

in which the actions are executable; the latter define instead a

probability distribution over the possible next states reachable

by the agent after the execution of the action.

Upon the execution of an action ak, the MDP agent obtains

a reward. We define the reward function as a penalty score

on the executed actions. The reward function evaluates the

response actions according to the following criteria:

• Response Time T (ak) ∈ R. This criteria represents the

time needed to apply the response a.
• Cost C(ak) ∈ R. This criteria represents the economic

cost of applying the response a.
• Impact index I(ak) ∈ [0, 1]. This criteria represents the

impact index of the response ak on the normal system

operativeness. The lower its value is, the lower is the

impact on the system.

We define the following reward function:

Rk = −wr

T (ak)

Tmax

− wc

C(ak)

Cmax

− wiI(ak) (3)

where wr , wc, wi ∈ [0, 1] are custom weights used to balance

the importance of the criteria in the multicriteria optimization

problem. Tmax and Cmax represent respectively the maximum

response time and the maximum cost over all the considered

response actions and are used to normalize their values.

The planning process stops when the agent reaches a state

belonging to the subset of the target states Stgt = {s|F =
true}, where F is a termination function expressed as a

boolean condition on the state attributes.

V. PERFORMANCE EVALUATION

VI is one of the mostly used algorithms to plan an optimal

policy for Single-Agent and Multi-Agent MDPs [6], [8].

It produces successive approximations of the optimal value

function until the expected objective value is stable for all

the MDP states. Unfortunately, even if each iteration can be

performed in O(|A||S|2) steps [13], the number of states

composing the MDP grows exponentially with the number of

the defined attributes. For this reason, carefully designing and

developing the response selection algorithm is fundamental in

order for the IRS to be able to protect large systems. When

realizing a system model as described in Section IV, even a

relatively small system could require hundreds of attributes,

resulting therefore in a hardly feasible optimization problem.

However, we observe that not necessarily the entire set of

attributes and the entire set of actions must be included when

instantiating the MDP problem: while countering any threat,

indeed, we only need to consider only the attributes and the

actions that, directly or indirectly, help in facing the threat.

The rationale is that specific threats are supposed to impact

only specific system attributes and therefore the IRS should

instantiate only the minimal MDP required to counter the

detected attack.

In this section we first describe the testbed on which we ran

the experiments and how we generated the experimental MDP;

then, we compare the performance of a single-threaded VI

planner with the performance of a single-threaded sub-optimal

rollout-based Monte-Carlo planning algorithm named UCT

[15], both of them implemented in the state of the art BURLAP

[2] library; finally we propose, to the best of our knowledge,

the first multi-threaded implementation of the VI algorithm

specifically optimized to run on the Intel Xeon Phi (Intel MIC)

platform. The latter exploits the massive parallelism of the

Intel MIC architecture and leverages its Vector Processing Unit

(VPU).

A. Testbed

The experiments have been run on a single compute node

of the Shadow supercomputer at Mississippi State University.

Each compute node of Shadow is characterized by 2 10-

core Intel Xeon E5-2680v2 CPU running at 2.8 Ghz, 512

GB of RAM and 2 Intel Xeon Phi accelerators 5100 series.

The latter has 61 x86 architecture processor cores running

at 1.05 Ghz. Each core contains a VPU, which has 32 512-

bit vector registers [10]. One VPU can execute 16 single-

precision (SP) or 8 double-precision (DP) operations per cycle.

The VPU can also execute 32 SP and 16 DP under fused

multiply-add instructions. Because of the new design, the

VPUs are very power efficient for HPC workloads [22]. Each

core has two-level caches. One 32KB L1 cache for data and

instruction, and a 512KB L2 cache. Although Intel Xeon Phi

does not provide shared cache between the cores, it supports

hardware-based cache coherency. All L2 caches of the 61 cores

are interconnected to each other, and these caches are also

interconnected with eight GDDR-5 memory controllers by a

ring bus. Therefore, the last-level cache of the Intel Xeon Phi

is up to 32MB.

Each Intel MIC is equipped with its own Linux-based

operating system and it is therefore accessible through SSH

like a standard Linux Machine. Two programming paradigms

are supported by Intel MIC: native mode and offload mode.

A native mode application is run directly on the Intel MIC:

usually the executable is compiled with the -mmic option

and then copied on the MIC board, where it is executed. In

this case only MIC’s resources are used by the application,

without interfering with the activities on the host. Offload

mode, instead, is used to realize hybrid applications able to

exploit both the host’s CPUs and the installed Intel MICs.

Unlike the native mode, in this case the executable is run

on the host and only properly annotated code fragments are

executed on the MIC. Application code and application data

is transferred from the host to the MIC and vice-versa using

the PCI-Express bus.

The experimental MDP has been built reflecting a system

characterized by up to 1000 boolean state attributes and up

to 1000 response actions. Each action is tied to one attribute

and it changes its boolean value when executed, in order to

generate the full state space. The termination condition is

based on an additional termination attribute that can be set to

Fig. 1. VI and UCT Planning Time Comparison

true by any action with probability 1/10. The reward function
assigns the reward −1 to the actions with an even index and

−2 to the actions with an odd index.

Boolean attributes are managed as a special case of numeric

attributes, with only two possible values (i.e., 0 and 1). Our
approach is based on a discrete-space MDP and therefore

it is possible to use both bounded and unbounded, natural

and real numeric attributes as long as the values assigned

to them belong to a finite set. Otherwise, the state space of

the MDP problem would be infinite and the resulting MDP

would be a continuous state MDP. As a consequence, different

planning algorithms that require the computation of continuous

integrals over the state space such as the Point-Based Value

Iteration introduced in [19] must be used. However, an exact

optimal solution can be computed only when a closed form

of the integrals can be found, and this only happens for

some special problems, e.g., if all the α-functions of the

Partially Observable MDP (POMDP) are linear combinations

of Gaussian distributions [7], [19]. In the other cases, only

approximated optimal solutions can be computed.

B. State of the Art Performance Evaluation

Figure 1 compares the planning time of the VI algorithm

configured with γ = 0.9 with the UCT algorithm configured

to perform 10, 20 or 30 rollouts and with a look-ahead of

10. Results highlight that VI’s planning time for systems with

50 state attributes and 50 response actions is 71 seconds. By

contrast, the UCT algorithm configured with 10 rollouts is

able to plan a policy in less than 2 seconds for a system with

1000 state attributes and 1000 response actions. However, the

response policies computed by UCT are not always optimal.

Figure 2 compares the obtained rewards. The average reward

obtained by VI is close to 10, specifically 10.07. This happens

because it always chooses the best response actions and on

the average 10 response actions executions are needed to take

the modeled system to the terminal state. By contrast, the

UCT algorithm with 30 rollouts produces an average reward

of 10.86, exhibiting therefore a reward gap of 8.6% in the

average. Since such a reward gap is not always tolerable when

planning policies for security purposes, we study in the next

section the performance of a parallel implementation of the

optimal VI algorithm.

Fig. 2. VI and UCT Rewards Comparison

C. Intel Xeon and Xeon Phi Performance Comparison

We discuss the performance of a VI planner written in C

and compiled with the icc compiler using the -O3 option

in order to leverage all the available optimizations. The core

of the application is the implementation of the right sum of

Equation 2, which is in part realized as shown in Figure 3.

1: for (i = 0; i < next_state_size; i++) {
2: __assume_aligned(action.probs, 64);

3: __assume_aligned(action.rewards, 64);

4: qs[i] = action.probs[i]*
(action.rewards[i] + GAMMA * v[i]);

5: }

Fig. 3. Implementation of part of the left sum of Equation 2

The particularity of this code fragment resides in the us-

age of the __assume_aligned() directives, that inform

the icc compiler that the base addresses of the variables

action.probs and action.rewards are aligned to a

multiple of 64 bytes, which is required in order to exploit vec-

torization. Such variables are indeed allocated with the Intel’s

specific routine _mm_malloc(), which allocates memory

starting with a base address multiple of a specified parameter.

Figure 4 shows the performance comparison of the multi-

threaded VI solver executed on the CPUs of a Shadow’s

compute node and on one of its Intel MICs in native mode with

an input problem consisting of 70 attributes and 70 response

actions. This is the biggest problem instance solvable with

the 8GB of RAM installed on the Phi 5110. The CPU-based

Fig. 4. Intel Xeon and Xeon Phi Planning Time Comparison

Fig. 5. Vectorization Report

execution has been run with a number of threads ranging from

1 to 20 because 20 cores are available on a Shadow’s compute

node, while the Phi-based execution has been run with a

number of threads ranging from 1 to 240 because each Intel

Xeon Phi 5110 board is characterized by 61 cores featuring

4 threads each. Intel’s best practices suggest to use up to 60

cores, so that a single core can be reserved for the operating

system. The speedup has been computed as CPUt/PHIt,

where CPUt is the planning time obtained by executing the

application on the CPU with t threads and PHIt is its Intel

Xeon Phi’s counterpart with vectorization. For t > 20, we used
the formula CPU20/PHIt. It is easy to see that CPU always

provides better performance in its range of operativeness and

it is able to compute an optimal response policy in almost 40

seconds when executed with 20 threads, while it requires 579

seconds when executed with 1 thread. This is due to its higher

clock frequency (2.8 Ghz versus 1.05 Ghz) and to its support

to Single Instruction Multiple Data (SIMD) with the 256-bit

Advanced Vector Extensions (AVX).

The breakeven point (corresponding to 1x speedup) between

the two architectures is reached with 80 threads on the Xeon

Phi, but the latter provides a 2x speedup over the 20-thread

execution on CPU, resulting in a planning time of 18 seconds,

when the application is executed with 240 threads.

Figure 5 shows a portion of the vectorization report gener-

ated by icc, regarding the code of Figure 3. The compiler

computed a scalar loop cost of 20, a vector loop cost of 10

and an estimated potential speedup obtainable vectorization

speedup of 7.27. However, the used version of icc has a bug

related to the speedup estimation: instead of computing it as

the ratio between the scalar cost and the vector cost, the latter

is multiplied by the unroll factor [3]. Therefore, the estimation

of the speedup would be 1.82 in our case. In order to verify

the estimation, we compiled the application for Intel MIC

explicitly disabling the vectorization features. Results shown in

Figure 4 show that the vectorized Phi implementation is in the

average 20% faster than the non vectorized implementation.

Such a gap with the predicted speedup, as explained by Intel

in [3], is due to the fact that the speedup prediction is a very

rough estimate, aimed only at deciding whether it is useful to

vectorize or not.

VI. CONCLUSION AND FUTURE WORK

During the last decade we saw the evolution of two gen-

erations of IRSs. The first generation was based on a static

mapping between attacks and responses, while the second

generation aimed at dynamically selecting the best response

given the current attack and a set of possibly conflicting crite-

ria. However, with the growth of Internet, the first generation

approaches immediately resulted to be impracticable because

of their inherent inflexibility. There is instead still some work

ongoing on the second generation approaches, even if they

have a limited applicability because they do not consider the

concept of system state.

In this paper we presented a performance evaluation of a

third-generation, stateful approach to IRS decision making

based on MDP, with specific focus on the offloading of

the planning algorithm to Intel MIC co-processors. We have

shown that the state of the art implementation of common

MDP solvers is not adequate to solve large MDP instances and

that co-processor offloading offers an effective way to increase

the performance and at the same time to reduce the load on

the system’s CPU, that can be completely dedicated to the

traditional workloads. Moreover, we have shown that the icc

automatic vectorization feature improved the performance of

the planner in the order of 20%. The proposed approach is

able to plan optimal response policies in a reasonable amount

of time for attacks impacting up to 70 system attributes and

that require a combination of up 70 response actions in order

to be handled.

As a future work we plan to extend the planner by de-

veloping an hybrid version able to exploit both the host’s

CPU and up to two concurrent Intel MICs installed on the

same host. Furthermore, we plan to compare the obtained

results to GPU-based many-core co-processors and we plan

to implement a parallel version of the VI algorithm for Multi-

Agent MDPs. Finally, in order to deal with the exponential

growth of the state space, a complementar approach is to

hierarchically decompose the MDP in sub-problems like in

[27].

ACKNOWLEDGEMENT

Funding for this work was (partially) provided by the Pacific

Northwest National Laboratory, under U.S. Department of

Energy Contract DE-AC05-76RL01830.

REFERENCES

[1] Akamai’s state of the internet: Q2 2015 report. https://www.akamai.
com/us/en/our-thinking/state-of-the-internet-report.

[2] Brown-umbc reinforcement learning and planning (burlap). http://burlap.
cs.brown.edu/.

[3] Vectorization potential speedup calculation. https://software.intel.com/
forums/intel-c-compiler/topic/560247.

[4] N. B. Anuar, M. Papadaki, S. Furnell, and N. Clarke. An investigation
and survey of response options for intrusion response systems (irss). In
Information Security for South Africa (ISSA), 2010, pages 1–8. IEEE,
2010.

[5] R. Bellman. Dynamic programming. princeton, nj: Princeton universi-
typress. BellmanDynamic Programming1957, 1957.

[6] C. Boutilier. Planning, learning and coordination in multiagent decision
processes. In Proceedings of the 6th conference on Theoretical aspects

of rationality and knowledge, pages 195–210. Morgan Kaufmann Pub-
lishers Inc., 1996.

[7] S. Brechtel, T. Gindele, et al. Solving continuous pomdps: Value iter-
ation with incremental learning of an efficient space representation. In
Proceedings of the 30th International conference on machine learning,
pages 370–378, 2013.

[8] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey
of multiagent reinforcement learning. Systems, Man, and Cybernetics,

Part C: Applications and Reviews, IEEE Transactions on, 38(2):156–
172, 2008.

[9] Q. Chen, S. Abdelwahed, and A. Erradi. A model-based validated
autonomic approach to self-protect computing systems. Internet of

Things Journal, IEEE, 1(5):446–460, 2014.
[10] J. Fang, H. Sips, L. Zhang, C. Xu, Y. Che, and A. L. Varbanescu.

Test-driving intel xeon phi. In Proceedings of the 5th ACM/SPEC

international conference on Performance engineering, pages 137–148.
ACM, 2014.

[11] B. Foo, Y.-S. Wu, Y.-C. Mao, S. Bagchi, and E. Spafford. Adepts:
adaptive intrusion response using attack graphs in an e-commerce
environment. In Dependable Systems and Networks, 2005. DSN 2005.

Proceedings. International Conference on, pages 508–517. IEEE, 2005.
[12] S. Iannucci and S. Abdelwahed. A probabilistic approach to autonomic

security management. In Proceedings of the 13th IEEE International

Conference on Autonomic Computing (ICAC), 2016.
[13] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement

learning: A survey. Journal of artificial intelligence research, pages
237–285, 1996.

[14] M. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling algorithm
for near-optimal planning in large markov decision processes. Machine

Learning, 49(2-3):193–208, 2002.
[15] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In

Machine Learning: ECML 2006, pages 282–293. Springer, 2006.
[16] L. Li, M. L. Littman, and L. Littman. Prioritized sweeping converges

to the optimal value function, 2008.
[17] S. Ossenbuhl, J. Steinberger, and H. Baier. Towards automated incident

handling: How to select an appropriate response against a network-based
attack? In IT Security Incident Management & IT Forensics (IMF), 2015

Ninth International Conference on, pages 51–67. IEEE, 2015.
[18] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of markov

decision processes. Mathematics of operations research, 12(3):441–450,
1987.

[19] J. M. Porta, N. Vlassis, M. T. Spaan, and P. Poupart. Point-based value
iteration for continuous pomdps. The Journal of Machine Learning

Research, 7:2329–2367, 2006.
[20] M. L. Puterman and M. C. Shin. Modified policy iteration algo-

rithms for discounted markov decision problems. Management Science,
24(11):1127–1137, 1978.

[21] A. Shameli-Sendi and M. Dagenais. Orcef: Online response cost
evaluation framework for intrusion response system. Journal of Network
and Computer Applications, 2015.

[22] Y. S. Shao and D. Brooks. Energy characterization and instruction-level
energy model of intel’s xeon phi processor. In Proceedings of the 2013

International Symposium on Low Power Electronics and Design, pages
389–394. IEEE Press, 2013.

[23] N. Stakhanova, S. Basu, and J. Wong. A cost-sensitive model for
preemptive intrusion response systems. In AINA, volume 7, pages 428–
435, 2007.

[24] T. Toth and C. Kruegel. Evaluating the impact of automated intrusion
response mechanisms. In Computer Security Applications Conference,

2002. Proceedings. 18th Annual, pages 301–310. IEEE, 2002.
[25] K. M. Vieira, D. S. M. Pascal Filho, C. B. Westphall, J. B. M. Sobral,

and J. Werner. Providing response to security incidents in the cloud
computing with autonomic systems and big data.

[26] K. M. Vieira, F. Schubert, G. A. Geronimo, R. de Souza Mendes,
and C. B. Westphall. Autonomic intrusion detection system in cloud
computing with big data. In Proceedings of the International Conference

on Security and Management (SAM), page 1. The Steering Committee
of The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2014.

[27] X. Zan, F. Gao, J. Han, X. Liu, and J. Zhou. A hierarchical and
factored pomdp based automated intrusion response framework. In
Software Technology and Engineering (ICSTE), 2010 2nd International

Conference on, volume 2, pages V2–410. IEEE, 2010.

