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Abstract 

The performance of a 496 qubit D-Wave Two quantum computer was investigated for spanning tree problems. The chip has a 

Chimera interaction graph G, an 8x8 lattice of clusters of eight qubits. Problem input consists of values for the fields hj and for 

the two-qubit interactions Ji,j of an Ising spin-glass problem formulated on G. Output is returned in terms of a spin configuration 

{sj}, with sj = ±1. A tree is a connected, undirected subgraph of G that contains no cycles, and a spanning tree is a tree which 

includes all of the vertices of G. We generated random spanning trees (RSTs), uniformly distributed over all spanning trees of G. 

One hundred RSTs with random Ji,j = {-1,1} and hj = 0 were generated on the full 8x8 graph G of the chip. Each RST problem 

was solved up to one hundred times and the number of times the ground state energy was found was recorded. This procedure 

was repeated for square subgraphs G′, thereby providing results for portions of the chip with dimensions ranging from 2x2 to 8x8. 
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The goal of this research was to explore ways in which to test the performance of the D-Wave Two [1]. In 

particular, our goal was to find ways to test and to validate the performance as the number of qubits are scaled in 

future generations of adiabatic quantum computers. It is envisioned that, in the future, the number of qubits will 

exceed the limits of simulation and comparison on a classical supercomputer. Random spanning tree problems 

[2][3][4] are a good candidate for such validation and testing. The ground state energy and spin configuration are 

known, and thus the solutions returned by the D-Wave Two can be checked without the use of classical 

supercomputers. Furthermore, every spanning tree incorporates every vertex of the graph, thereby testing every 

qubit, and the ensemble of all random spanning trees utilizes every edge of the graph, thereby testing all the couplers 
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between the qubits. Because of this, these types of problems can be used as a common test for different sizes of 

lattices; additionally, the spanning tree approach works for any graph G. For smaller chips, the results of 

experiments on the D-Wave Two can be compared with simulations on classical computers, namely simulated 

annealing and simulated quantum annealing [5]. 

The D-Wave Two utilizes what has been named the Chimera architecture [6][7][8]. Clusters of eight qubits are 

arranged into rows and columns, and the interactions among the qubits within each cluster are described by a 

complete bipartite graph K4,4. That is, each cluster can be further divided into two groups of four; we can name these 

two groups the red group and the blue group. Every qubit in the red group interacts with every qubit in the blue 

group, but there are no interactions among members of the same group. Furthermore, each red qubit in a cluster is 

connected with corresponding red qubits in the neighboring rows, and each blue qubit in a cluster is connected with 

corresponding blue qubits in the neighboring columns. Therefore, each qubit interacts via a coupler with at most six 

other qubits. Each coupler can be assigned a weight Ji,j, and each qubit can be assigned a magnetic field bias hj. 

Sixteen of the qubits and one coupler were non-functional on the chip used in our study. A complete bipartite graph 

Km,m has m2m-2 spanning trees, which for K4,4 is 4096. This number can be found on the OEIS website [9]. 

In the initial experiment, we studied the ferromagnet and the antiferromagnet on the full 8x8 Chimera graph (the 

entire chip) by applying equal interaction weights to each qubit pair; no magnetic fields were applied. For the 

ferromagnet, the interaction weights were varied from -1.5 to 0 in increments of 0.1; for the antiferromagnet, the 

values were varied from 1 to 0 in increments of 0.5. The results were similar in both cases: for interaction weights 

greater than 0.5, the D-Wave Two displayed an average success probability of 90% or greater for finding the ground 

state energy; the success probability decreased quickly for smaller weights. For the ferromagnet, every ground state 

configuration found consisted of all spin-ups; no spin-down ground state was observed, suggesting that some bias 

exists in the finding of the ground state spins. The D-Wave machine used was not a delivered product, and was 

intended for use internal to or approved by the company; so, the tuning procedure had not been performed to remove 

this up-down bias. Next, different random spanning trees were applied to the Chimera graph. Equal, ferromagnetic 

interaction weights were applied and were again varied from -1.5 to 0 in increments of 0.1. We observed the average 

success probability drop significantly as the interaction weight decreased. No clear pattern was observed among the 

data points, with the average success probability fluctuating; these fluctuations were most likely due to the up-down 

bias.  

In the second experiment, random spanning trees were solved with equal, constant interaction weights applied to 

each qubit pair in the tree. This was done for the 3x3, 4x4, 5x5, 6x6, and 7x7 subgraphs. Up to one hundred different 

spanning trees were solved on each subgraph, and each tree was submitted up to one hundred times. Each 

submission, or trial, resulted in the execution of one thousand annealing trajectories. We observed the success 

Fig. 1. (a) A spanning tree on a 5x5 Chimera lattice; (b) The same spanning tree (thick connections) embedded into the 5x5 subgraph of the 

Chimera lattice of the D-Wave Two used in our study. 

(a) (b) 
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probabilities fluctuate widely from trial to trial; these fluctuations were attributed mainly to the up-down bias. The 

only pattern observed was that the 3x3, 5x5, and 7x7 graphs tended to have a higher average success probability than 

anticipated by data from the 4x4 and 6x6 graphs. Again, only spin-up ground states were observed. 

In the final experiment, random spanning trees were again solved, but with interaction weights of -1 or +1 

randomly assigned to each qubit coupler involved; again, all hj were set to zero. This corresponds to a random gauge 

transformation [10]. The calculations were performed on the full 8x8 graph and on each subgraph, excluding the 

trivial 1x1 subgraph. All subgraphs were restricted to the upper-left corner of the Chimera lattice. Up to one hundred 

spanning trees were solved on each subgraph; again, each tree was submitted up to one hundred times, resulting in 

one thousand annealing trajectories each. The number of occurrences of the ground state energy was recorded. The 

mean, standard deviation, and median were calculated for each tree and across the trees of each subgraph. 

Additionally, for each subgraph, the trials were organized into bins according to their success probability. An 

example of such an analysis is shown in Fig. 2. For the 5x5 subgraph, which had 197 available qubits, one hundred 

different spanning trees were generated, and each one was submitted one hundred times, giving a total of ten 

thousand trials. On each trial, the D-Wave Two solved the tree one thousand times, and we recorded the number of 

times that it found the ground state energy. These trials were then organized by their success probability into the 

bins shown in the figure. The success probabilities of the 5x5 subgraph demonstrated a type of bimodal distribution, 

with a larger peak around the lower success probabilities. The success rates were highest for the 2x2 subgraph and 

decreased for each successive subgraph up to the full lattice. The 2x2, 3x3, and 4x4 subgraphs tended to be much 

more successful on the average, while the 6x6, 7x7, and 8x8 graphs showed much lower success probabilities. 

Additionally, the 4x4 subgraph also demonstrated a bimodal distribution, with the larger peak shifted to the right 

toward higher success probabilities. 

     In our final analysis, we looked at whether or not the ground state energy was found on each trial. If the ground 

state was found at least once out of the one thousand annealing trajectories, this was counted as a success. The 

results are presented in Fig. 3. Each point represents the success probability calculated over all trials on that 

subgraph. For the 2x2 and 3x3 subgraphs, the D-Wave Two found the ground state energy 100% of the time; this 

Fig. 2. Trials on the 5x5 subgraph organized by success probabilities, defined as the number of times the ground state was found. Data are from 

one hundred spanning trees, each with 105 measurements. 
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means that the ground state energy was found at least once on each trial. The success probability decreases for each 

larger subgraph; the success probability for the full 8x8 graph was 33%. The success of an adiabatic quantum 

annealer, such as the D-Wave Two, is a function of the annealing time and the temperature [11]. For infinite 

annealing time and operation at absolute zero temperature, the ground state is guaranteed, theoretically, to be found 

[12]. The chip used in our study had an annealing time of 20 µs and operated at 20 mK. The next generation D-

Wave computer, a 1000-qubit chip, is expected to operate at a lower temperature, and this should increase the 

success probability for each subgraph. 

In summary, we concluded in our first study of the ferromagnet and the antiferromagnet that the probability of 

finding the ground state correlates with the strength of the interaction, as expected; higher success rates are seen for 

stronger interaction weights and decrease at lower interaction weights. In our second study of ferromagnetic 

spanning trees, we determined that the up-down bias was influencing our results to an unacceptable degree, 

prompting us to study spanning trees with randomly assigned interaction weights of -1 or +1. We determined this to 

sufficiently mitigate the bias. The final results show that the probability of finding the ground state energy decreases 

on average with the number of qubits for fixed annealing time and temperature. The philosophy of our study is 

similar to a recent preprint [13]. 
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