Abstract Submitted for the MAR13 Meeting of The American Physical Society

The effective half-filled band model is inappropriate for the dimerized 2D organic superconductors¹ NILADRI GOMES, University of Arizona, R. TORSTEN CLAY, Mississippi State University, SUMIT MAZUMDAR, University of Arizona — The antiferromagnetism in κ -(ET)₂X can be understood within the effective $\frac{1}{2}$ -filled band anisotropic triangular lattice Hubbard Hamiltonian for strong anisotropy. DMFT theories have claimed antiferromagnetic-tosuperconductor transition within the same model, as the anistropy is reduced. In previous work we have shown the absence of superconductivity within the triangular lattice $\frac{1}{2}$ -filled band Hubbard model for any Hubbard U and any anisotropy. Other DMFT approaches theories have claimed superconductivity within the so-called Hubbard-Heisenberg model, which incorporates an additional antiferromagnetic spin-exchange over and above that due to the Hubbard U. Very recent work has also claimed a valence-bond solid (VBS) phase within the Hubbard-Heisenberg model, which would seemingly explain the observed VBS phase in $EtMe_3P[Pd(dmit)_2]_2$. We report exact calculations that show that neither the VBS nor the superconducting phase occur within the Hubbard-Heisenberg model, showing clearly that the effective $\frac{1}{2}$ -filled band model is unsuitable for describing the complete phase space of the κ -(ET)₂X. Our work raises serious doubts about the DMFT theories of superconductivity of metal intercalated C_{60} and picene.

¹supported by DOE Grant Number: DE-FG02-06ER46315

Niladri Gomes University of Arizona

Date submitted: 09 Nov 2012

Electronic form version 1.4